File size: 23,047 Bytes
23bd7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

from .initialize import get_tensor_model_parallel_rank
from .initialize import get_tensor_model_parallel_world_size
from .initialize import get_tensor_model_parallel_group
from .mappings import copy_to_tensor_model_parallel_region
from .mappings import gather_from_tensor_model_parallel_region
from .mappings import gather_from_sequence_parallel_region
from .mappings import reduce_from_tensor_model_parallel_region
from .mappings import scatter_to_tensor_model_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region

from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
from megatron import get_args, get_global_memory_buffer

_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
                                      'partition_dim': -1,
                                      'partition_stride': 1}

def param_is_not_tensor_parallel_duplicate(param):
    return (hasattr(param, 'tensor_model_parallel') and
            param.tensor_model_parallel) or (
                get_tensor_model_parallel_rank() == 0)


def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
    # Make sure the attributes are not set.
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        assert not hasattr(tensor, attribute)
    # Set the attributes.
    setattr(tensor, 'tensor_model_parallel', is_parallel)
    setattr(tensor, 'partition_dim', dim)
    setattr(tensor, 'partition_stride', stride)


def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
    def maybe_set(attribute, value):
        if not hasattr(tensor, attribute):
            setattr(tensor, attribute, value)
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])


def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
    def maybe_copy(attribute):
        if hasattr(source_tensor, attribute):
            setattr(destination_tensor, attribute,
                    getattr(source_tensor, attribute))
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_copy(attribute)


def _initialize_affine_weight_gpu(weight, init_method,
                                  partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(weight, output_size, input_size,
                                  per_partition_size, partition_dim,
                                  init_method, stride=1,
                                  return_master_weight=False):
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""

    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

    # Initialize master weight
    master_weight = torch.empty(output_size, input_size,
                                dtype=torch.float,
                                requires_grad=False)
    init_method(master_weight)
    args = get_args()
    master_weight = master_weight.to(dtype=args.params_dtype)

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(master_weight, per_partition_per_stride_size,
                              dim=partition_dim)
    rank = get_tensor_model_parallel_rank()
    world_size = get_tensor_model_parallel_world_size()
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """

    def __init__(self, num_embeddings, embedding_dim,
                 init_method=init.xavier_normal_):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
        # Divide the weight matrix along the vocaburaly dimension.
        self.vocab_start_index, self.vocab_end_index = \
            VocabUtility.vocab_range_from_global_vocab_size(
                self.num_embeddings, get_tensor_model_parallel_rank(),
                self.tensor_model_parallel_size)
        self.num_embeddings_per_partition = self.vocab_end_index - \
            self.vocab_start_index

        # Allocate weights and initialize.
        args = get_args()
        if args.use_cpu_initialization:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                dtype=args.params_dtype))
            if args.perform_initialization:
                _initialize_affine_weight_cpu(
                    self.weight, self.num_embeddings, self.embedding_dim,
                    self.num_embeddings_per_partition, 0, init_method)
        else:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            if args.perform_initialization:
                _initialize_affine_weight_gpu(self.weight, init_method,
                                              partition_dim=0, stride=1)

    def forward(self, input_):
        if self.tensor_model_parallel_size > 1:
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | \
                         (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
        output_parallel = F.embedding(masked_input, self.weight,
                                      self.padding_idx, self.max_norm,
                                      self.norm_type, self.scale_grad_by_freq,
                                      self.sparse)
        # Mask the output embedding.
        if self.tensor_model_parallel_size > 1:
            output_parallel[input_mask, :] = 0.0
        # Reduce across all the model parallel GPUs.
        output = reduce_from_tensor_model_parallel_region(output_parallel)
        return output


class LinearWithGradAccumulationAndAsyncCommunication(torch.autograd.Function):
    """
    Linear layer execution with asynchronous communication and gradient accumulation
    fusion in backprop.
    """

    @staticmethod
    def forward(ctx, input, weight, bias, gradient_accumulation_fusion,
                async_grad_allreduce, sequence_parallel):
        ctx.save_for_backward(input, weight)
        ctx.use_bias = bias is not None
        ctx.gradient_accumulation_fusion = gradient_accumulation_fusion
        ctx.async_grad_allreduce = async_grad_allreduce
        ctx.sequence_parallel = sequence_parallel
      
        if sequence_parallel:
            world_size = get_tensor_model_parallel_world_size()
            dim_size = list(input.size())
            dim_size[0] = dim_size[0] * world_size

            all_gather_buffer = \
                get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
            torch.distributed._all_gather_base(
                all_gather_buffer,
                input,
                group=get_tensor_model_parallel_group())
            total_input = all_gather_buffer
        else:
            total_input = input

        output = torch.matmul(total_input, weight.t())
        if bias is not None:
            output = output + bias
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input, weight = ctx.saved_tensors
        use_bias = ctx.use_bias
        
        if ctx.sequence_parallel:
            world_size = get_tensor_model_parallel_world_size()
            dim_size = list(input.size())
            dim_size[0] = dim_size[0] * world_size

            all_gather_buffer = \
                get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
            handle = torch.distributed._all_gather_base(
                all_gather_buffer,
                input,
                group=get_tensor_model_parallel_group(), async_op=True)

            # Delay the start of intput gradient computation shortly (3us) to have
            # gather scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
            total_input = all_gather_buffer
        else:
            total_input = input
        grad_input = grad_output.matmul(weight)

        if ctx.sequence_parallel:
            handle.wait()

        # Convert the tensor shapes to 2D for execution compatibility
        grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1],
                                       grad_output.shape[2])
        total_input = total_input.view(total_input.shape[0] * total_input.shape[1],
				       total_input.shape[2])
 
        if ctx.async_grad_allreduce:
            # Asynchronous all-reduce
            handle = torch.distributed.all_reduce(
                    grad_input, group=get_tensor_model_parallel_group(), async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # all-reduce scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
 
        if ctx.sequence_parallel:
            assert not ctx.async_grad_allreduce
            dim_size = list(input.size())
            sub_grad_input = torch.empty(dim_size, dtype=input.dtype,
                                         device=torch.cuda.current_device(),
                                         requires_grad=False)
            # reduce_scatter
            handle = torch.distributed._reduce_scatter_base(sub_grad_input, grad_input, 
                                                            group=get_tensor_model_parallel_group(),
                                                            async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # reduce scatter scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
        

        if ctx.gradient_accumulation_fusion:
            import fused_dense_cuda
            fused_dense_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, weight.main_grad)
            grad_weight = None
        else:
            grad_weight = grad_output.t().matmul(total_input)
        grad_bias = grad_output.sum(dim=0) if use_bias else None

        if ctx.sequence_parallel:
            handle.wait()
            return sub_grad_input, grad_weight, grad_bias, None, None, None

        if ctx.async_grad_allreduce:
            handle.wait()

        return grad_input, grad_weight, grad_bias, None, None, None


class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
        gather_output: If true, call all-gather on output and make Y available
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip
                       adding bias but instead return it.
    """

    def __init__(self, input_size, output_size, bias=True, gather_output=True,
                 init_method=init.xavier_normal_, stride=1,
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
        world_size = get_tensor_model_parallel_world_size()
        self.output_size_per_partition = divide(output_size, world_size)
        self.skip_bias_add = skip_bias_add

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
        # Initialize weight.
        args = get_args()
        if args.use_cpu_initialization:
            self.weight = Parameter(torch.empty(self.output_size_per_partition,
                                                self.input_size,
                                                dtype=args.params_dtype))
            if args.perform_initialization:
                self.master_weight = _initialize_affine_weight_cpu(
                    self.weight, self.output_size, self.input_size,
                    self.output_size_per_partition, 0, init_method,
                    stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size_per_partition, self.input_size,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            if args.perform_initialization:
                _initialize_affine_weight_gpu(self.weight, init_method,
                                              partition_dim=0, stride=stride)

        if bias:
            if args.use_cpu_initialization:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition, dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
            set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
        self.async_tensor_model_parallel_allreduce = (
                args.async_tensor_model_parallel_allreduce and
                world_size > 1)
        self.sequence_parallel = (
                args.sequence_parallel and
                world_size > 1)
        assert not self.async_tensor_model_parallel_allreduce or \
            not self.sequence_parallel
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion

    def forward(self, input_):
        bias = self.bias if not self.skip_bias_add else None

        if self.async_tensor_model_parallel_allreduce or \
                self.sequence_parallel:
            input_parallel = input_
        else:
            input_parallel = copy_to_tensor_model_parallel_region(input_)
        # Matrix multiply.
        output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
            input_parallel, self.weight, bias, self.gradient_accumulation_fusion,
            self.async_tensor_model_parallel_allreduce, self.sequence_parallel)
        if self.gather_output:
            # All-gather across the partitions.
            assert not self.sequence_parallel
            output = gather_from_tensor_model_parallel_region(output_parallel)
        else:
            output = output_parallel
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
        skip_bias_add: This was added to enable performance optimization where bias
                       can be fused with other elementwise operations. We skip
                       adding bias but instead return it.
    """

    def __init__(self, input_size, output_size, bias=True,
                 input_is_parallel=False,
                 init_method=init.xavier_normal_, stride=1,
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
        world_size = get_tensor_model_parallel_world_size()
        self.input_size_per_partition = divide(input_size, world_size)
        self.skip_bias_add = skip_bias_add

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
        # Initialize weight.
        args = get_args()
        if args.use_cpu_initialization:
            self.weight = Parameter(torch.empty(self.output_size,
                                                self.input_size_per_partition,
                                                dtype=args.params_dtype))
            if args.perform_initialization:
                self.master_weight = _initialize_affine_weight_cpu(
                    self.weight, self.output_size, self.input_size,
                    self.input_size_per_partition, 1, init_method,
                    stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size, self.input_size_per_partition,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            if args.perform_initialization:
                _initialize_affine_weight_gpu(self.weight, init_method,
                                              partition_dim=1, stride=stride)
        if bias:
            if args.use_cpu_initialization:
                self.bias = Parameter(torch.empty(self.output_size,
                                                  dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size, device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
            setattr(self.bias, 'sequence_parallel', args.sequence_parallel)

            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
        self.sequence_parallel = args.sequence_parallel
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion



    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
            assert not self.sequence_parallel
            input_parallel = scatter_to_tensor_model_parallel_region(input_)
        # Matrix multiply.
        output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
            input_parallel, self.weight, None,
            self.gradient_accumulation_fusion, None, None)
        # All-reduce across all the partitions.
        if self.sequence_parallel:
            output_ = reduce_scatter_to_sequence_parallel_region(output_parallel)
        else:
            output_ = reduce_from_tensor_model_parallel_region(output_parallel)
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
        else:
            output = output_
            output_bias = self.bias
        return output, output_bias