yuyan-10b / megatron /training.py
Shawn001's picture
Upload 131 files
23bd7af
raw
history blame
No virus
43.3 kB
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain utilities."""
from datetime import datetime
import math
import sys
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from torch.utils.tensorboard import SummaryWriter
from megatron import get_args
from megatron import get_signal_handler
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import get_current_global_batch_size
from megatron import get_num_microbatches
from megatron import is_last_rank
from megatron import update_num_microbatches
from megatron import mpu
from megatron import print_rank_0
from megatron import print_rank_last
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import Float16Module
from megatron.model import ModelType
from megatron.optimizer import get_megatron_optimizer
from megatron.initialize import initialize_megatron
from megatron.initialize import write_args_to_tensorboard
from megatron.initialize import set_jit_fusion_options
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import unwrap_model
from megatron.data.data_samplers import build_pretraining_data_loader
from megatron.utils import calc_params_l2_norm
from megatron.schedules import get_forward_backward_func
from megatron.utils import report_memory
from megatron.model.vision.knn_monitor import compute_feature_bank
def print_datetime(string):
"""Note that this call will sync across all ranks."""
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_rank_0('[' + string + '] datetime: {} '.format(time_str))
def pretrain(train_valid_test_dataset_provider,
model_provider,
model_type,
forward_step_func,
process_non_loss_data_func=None,
extra_args_provider=None,
args_defaults={}):
"""Main training program.
This function will run the followings in the order provided:
1) initialize Megatron.
2) setup model, optimizer and lr schedule using the model_provider.
3) call train_val_test_data_provider to get train/val/test datasets.
4) train the modle using the forward_step_func.
Arguments:
train_valid_test_dataset_provider: a function that takes the size of
train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
model_type: an enum that specifies the type of model being trained.
forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being
the info we would like to monitor during training, for example
`lm-loss: value`. We also require that this function add
`batch generator` to the timers class.
process_non_loss_data_func: a function to post process outputs of the
network. It can be used for dumping output tensors (e.g images) to
tensorboard. It takes `collected data`(list of tensors),
`current iteration index` and `tensorboard writer` as arguments.
extra_args_provider: a function that takes a parser and adds arguments
to it. It is used for programs to add their own arguments.
args_defaults: a dictionary from argument-name to argument-value. It
to set already parse arguments.
"""
# Initalize and get arguments, timers, and Tensorboard writer.
initialize_megatron(extra_args_provider=extra_args_provider,
args_defaults=args_defaults)
# Set pytorch JIT layer fusion options and warmup JIT functions.
set_jit_fusion_options()
# Adjust the startup time so it reflects the largest value.
# This will be closer to what scheduler will see (outside of
# image ... launches.
global _TRAIN_START_TIME
start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
torch.distributed.all_reduce(start_time_tensor,
op=torch.distributed.ReduceOp.MIN)
_TRAIN_START_TIME = start_time_tensor.item()
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
time.time() - _TRAIN_START_TIME))
print_datetime('after megatron is initialized')
args = get_args()
timers = get_timers()
# Model, optimizer, and learning rate.
timers('model-and-optimizer-setup').start()
model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
model_type)
timers('model-and-optimizer-setup').stop()
print_datetime('after model, optimizer, and learning rate '
'scheduler are built')
# Data stuff.
timers('train/valid/test-data-iterators-setup').start()
if args.virtual_pipeline_model_parallel_size is not None:
all_data_iterators = [
build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
for _ in range(len(model))
]
train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
else:
train_data_iterator, valid_data_iterator, test_data_iterator \
= build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
timers('train/valid/test-data-iterators-setup').stop()
print_datetime('after dataloaders are built')
# Print setup timing.
print_rank_0('done with setup ...')
timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
print_rank_0('training ...')
iteration = 0
if args.do_train and args.train_iters > 0:
iteration = train(forward_step_func,
model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func)
print_datetime('after training is done')
if args.do_valid:
prefix = 'the end of training for val data'
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func,
False)
if args.save and iteration != 0:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
if args.do_test:
# Run on test data.
prefix = 'the end of training for test data'
evaluate_and_print_results(prefix, forward_step_func,
test_data_iterator, model,
0, process_non_loss_data_func,
True)
def update_train_iters(args):
# For iteration-based training, we don't need to do anything
if args.train_iters:
return
# Constant batch size with sample-based training.
if args.rampup_batch_size is None:
args.train_iters = args.train_samples // args.global_batch_size
else:
# Sample based training with rampup batch size.
iterations = 0
consumed_samples = 0
# Rampup phase.
while consumed_samples <= int(args.rampup_batch_size[2]):
update_num_microbatches(consumed_samples, consistency_check=False)
consumed_samples += get_current_global_batch_size()
iterations += 1
# Reset
update_num_microbatches(0, consistency_check=False)
# Constant phase
# Note that we throw away any partial last batch.
iterations += (args.train_samples - consumed_samples) // \
args.global_batch_size
args.train_iters = iterations
print_rank_0('setting training iterations to {}'.format(args.train_iters))
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
"""Build the model."""
args = get_args()
args.model_type = model_type
# Build model.
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.virtual_pipeline_model_parallel_size is not None:
assert model_type != ModelType.encoder_and_decoder, \
"Interleaved schedule not supported for model with both encoder and decoder"
model = []
for i in range(args.virtual_pipeline_model_parallel_size):
mpu.set_virtual_pipeline_model_parallel_rank(i)
# Set pre_process and post_process only after virtual rank is set.
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
this_model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
this_model.model_type = model_type
model.append(this_model)
else:
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
add_encoder = True
add_decoder = True
if model_type == ModelType.encoder_and_decoder:
if mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.pipeline_model_parallel_split_rank is not None, \
"Split rank needs to be specified for model with both encoder and decoder"
rank = mpu.get_pipeline_model_parallel_rank()
split_rank = args.pipeline_model_parallel_split_rank
world_size = mpu.get_pipeline_model_parallel_world_size()
pre_process = rank == 0 or rank == split_rank
post_process = (rank == (split_rank - 1)) or (
rank == (world_size - 1))
add_encoder = mpu.is_pipeline_stage_before_split()
add_decoder = mpu.is_pipeline_stage_after_split()
model = model_provider_func(
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
else:
model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
model.model_type = model_type
if not isinstance(model, list):
model = [model]
# Set tensor model parallel attributes if not set.
# Only parameters that are already tensor model parallel have these
# attributes set for them. We should make sure the default attributes
# are set for all params so the optimizer can use them.
for model_module in model:
for param in model_module.parameters():
mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on (tensor, pipeline) '
'model parallel rank ({}, {}): {}'.format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
sum([sum([p.nelement() for p in model_module.parameters()])
for model_module in model])), flush=True)
# GPU allocation.
for model_module in model:
model_module.cuda(torch.cuda.current_device())
# Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model]
if wrap_with_ddp:
if args.DDP_impl == 'torch':
i = torch.cuda.current_device()
model = [torchDDP(model_module, device_ids=[i], output_device=i,
process_group=mpu.get_data_parallel_group())
for model_module in model]
elif args.DDP_impl == 'local':
model = [LocalDDP(model_module,
args.accumulate_allreduce_grads_in_fp32,
args.use_contiguous_buffers_in_local_ddp)
for model_module in model]
# broad cast params from data parallel src rank to other data parallel ranks
if args.data_parallel_random_init:
for model_module in model:
model_module.broadcast_params()
else:
raise NotImplementedError('Unknown DDP implementation specified: '
'{}. Exiting.'.format(args.DDP_impl))
return model
def get_optimizer_param_scheduler(optimizer):
"""Build the learning rate scheduler."""
args = get_args()
# Iteration-based training.
if args.train_iters:
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters
lr_decay_steps = args.lr_decay_iters * args.global_batch_size
wd_incr_steps = args.train_iters * args.global_batch_size
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
# Sample-based training.
elif args.train_samples:
# We need to set training iters for later use. Technically
# we need to adjust the training samples too (due to last
# batch being incomplete) but we leave it as is for now.
update_train_iters(args)
if args.lr_decay_samples is None:
args.lr_decay_samples = args.train_samples
lr_decay_steps = args.lr_decay_samples
wd_incr_steps = args.train_samples
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_samples
else:
raise Exception(
'either train-iters or train-samples should be provided.')
opt_param_scheduler = OptimizerParamScheduler(
optimizer,
max_lr=args.lr,
min_lr=args.min_lr,
lr_warmup_steps=lr_warmup_steps,
lr_decay_steps=lr_decay_steps,
lr_decay_style=args.lr_decay_style,
start_wd=args.start_weight_decay,
end_wd=args.end_weight_decay,
wd_incr_steps=wd_incr_steps,
wd_incr_style=args.weight_decay_incr_style,
use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
override_opt_param_scheduler=args.override_opt_param_scheduler)
return opt_param_scheduler
def setup_model_and_optimizer(model_provider_func,
model_type,
no_wd_decay_cond=None,
scale_lr_cond=None,
lr_mult=1.0):
"""Setup model and optimizer."""
args = get_args()
model = get_model(model_provider_func, model_type)
unwrapped_model = unwrap_model(model,
(torchDDP, LocalDDP, Float16Module))
optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
scale_lr_cond, lr_mult)
opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
if args.load is not None:
timers = get_timers()
# Extra barrier is added to make sure all ranks report the
# max time.
torch.distributed.barrier()
timers('load-checkpoint').start()
args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
torch.distributed.barrier()
timers('load-checkpoint').stop()
timers.log(['load-checkpoint'])
else:
args.iteration = 0
# We only support local DDP with multiple micro-batches.
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.DDP_impl == 'local'
# get model without FP16 and/or TorchDDP wrappers
if args.iteration == 0 and len(unwrapped_model) == 1 \
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
print_rank_0("Initializing ICT from pretrained BERT model")
unwrapped_model[0].init_state_dict_from_bert()
if args.fp16:
optimizer.reload_model_params()
return model, optimizer, opt_param_scheduler
def train_step(forward_step_func, data_iterator,
model, optimizer, opt_param_scheduler):
"""Single training step."""
args = get_args()
timers = get_timers()
# Set grad to zero.
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
for partition in model:
partition.zero_grad_buffer()
optimizer.zero_grad()
# Forward pass.
forward_backward_func = get_forward_backward_func()
losses_reduced = forward_backward_func(
forward_step_func, data_iterator, model,
optimizer, timers, forward_only=False)
# Empty unused memory.
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
# Reduce gradients.
timers('backward-reduce-model-grads').start()
optimizer.reduce_model_grads(args, timers)
timers('backward-reduce-model-grads').stop()
# Vision gradients.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)
# Update parameters.
timers('optimizer').start()
update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
timers('optimizer').stop()
# Gather params.
if update_successful:
timers('backward-gather-model-params').start()
optimizer.gather_model_params(args, timers)
timers('backward-gather-model-params').stop()
# Vision momentum.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.update_momentum(args.curr_iteration)
# Update learning rate.
if update_successful:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
opt_param_scheduler.step(increment=increment)
skipped_iter = 0
else:
skipped_iter = 1
# Empty unused memory.
if args.empty_unused_memory_level >= 2:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in losses_reduced[0]:
if key == "describe":
continue
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad, my_writer):
"""Log training information such as losses, timing, ...."""
args = get_args()
timers = get_timers()
writer = get_tensorboard_writer()
# Advanced, skipped, and Nan iterations.
advanced_iters_key = 'advanced iterations'
skipped_iters_key = 'skipped iterations'
nan_iters_key = 'nan iterations'
# Advanced iterations.
if not skipped_iter:
total_loss_dict[advanced_iters_key] = total_loss_dict.get(
advanced_iters_key, 0) + 1
else:
if advanced_iters_key not in total_loss_dict:
total_loss_dict[advanced_iters_key] = 0
# Skipped iterations.
total_loss_dict[skipped_iters_key] = total_loss_dict.get(
skipped_iters_key, 0) + skipped_iter
# Update losses and set nan iterations
got_nan = False
for key in loss_dict:
if not skipped_iter:
total_loss_dict[key] = total_loss_dict.get(
key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
else:
value = loss_dict[key].float().sum().item()
is_nan = value == float('inf') or \
value == -float('inf') or \
value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(
nan_iters_key, 0) + int(got_nan)
# Logging.
timers_to_log = []
def add_to_logging(name):
if name in timers.timers:
timers_to_log.append(name)
# add_to_logging('forward-compute')
# add_to_logging('forward-recv')
# add_to_logging('forward-send')
# add_to_logging('forward-backward-send-forward-backward-recv')
# add_to_logging('backward-compute')
# add_to_logging('backward-recv')
# add_to_logging('backward-send')
# add_to_logging('backward-send-forward-recv')
# add_to_logging('backward-send-backward-recv')
# add_to_logging('backward-params-all-reduce')
# add_to_logging('backward-layernorm-all-reduce')
# add_to_logging('backward-embedding-all-reduce')
# add_to_logging('backward-reduce-model-grads')
# add_to_logging('backward-gather-model-params')
# add_to_logging('optimizer-copy-to-main-grad')
# add_to_logging('optimizer-unscale-and-check-inf')
# add_to_logging('optimizer-clip-main-grad')
# add_to_logging('optimizer-count-zeros')
# add_to_logging('optimizer-inner-step')
# add_to_logging('optimizer-copy-main-to-model-params')
# add_to_logging('optimizer')
# add_to_logging('batch-generator')
# Calculate batch size.
batch_size = args.micro_batch_size * args.data_parallel_size * \
get_num_microbatches()
total_iterations = total_loss_dict[advanced_iters_key] + \
total_loss_dict[skipped_iters_key]
# Tensorboard values.
# if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
# is_last_rank():
# if args.log_learning_rate_to_tensorboard:
# writer.add_scalar('learning-rate', learning_rate, iteration)
# writer.add_scalar('learning-rate vs samples', learning_rate,
# args.consumed_train_samples)
# if args.log_batch_size_to_tensorboard:
# writer.add_scalar('batch-size', batch_size, iteration)
# writer.add_scalar('batch-size vs samples', batch_size,
# args.consumed_train_samples)
# for key in loss_dict:
# writer.add_scalar(key , loss_dict[key], iteration)
# writer.add_scalar(key + ' vs samples', loss_dict[key],
# args.consumed_train_samples)
# if args.log_loss_scale_to_tensorboard:
# writer.add_scalar('loss-scale', loss_scale, iteration)
# writer.add_scalar('loss-scale vs samples', loss_scale,
# args.consumed_train_samples)
# if args.log_world_size_to_tensorboard:
# writer.add_scalar('world-size', args.world_size, iteration)
# writer.add_scalar('world-size vs samples', args.world_size,
# args.consumed_train_samples)
# if grad_norm is not None:
# writer.add_scalar('grad-norm', grad_norm, iteration)
# writer.add_scalar('grad-norm vs samples', grad_norm,
# args.consumed_train_samples)
# if num_zeros_in_grad is not None:
# writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
# writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
# args.consumed_train_samples)
# if params_norm is not None:
# writer.add_scalar('params-norm', params_norm, iteration)
# writer.add_scalar('params-norm vs samples', params_norm,
# args.consumed_train_samples)
# if args.log_timers_to_tensorboard:
# timers.write(timers_to_log, writer, iteration,
# normalizer=total_iterations)
# if args.log_memory_to_tensorboard:
# mem_stats = torch.cuda.memory_stats()
# writer.add_scalar(
# "mem-reserved-bytes",
# mem_stats["reserved_bytes.all.current"],
# iteration,
# )
# writer.add_scalar(
# "mem-allocated-bytes",
# mem_stats["allocated_bytes.all.current"],
# iteration,
# )
# writer.add_scalar(
# "mem-allocated-count",
# mem_stats["allocation.all.current"],
# iteration,
# )
if my_writer and iteration % args.log_interval == 0 and is_last_rank():
# record learning rate
my_writer.add_scalar('train/learning-rate', learning_rate, iteration)
# record loss and ppl
total_train_loss = 0
for key in loss_dict:
my_writer.add_scalar("train/" + key , loss_dict[key], iteration)
ppl = math.exp(min(20, loss_dict[key]))
my_writer.add_scalar("train/" + key + "_ppl" , ppl, iteration)
total_train_loss += loss_dict[key]
my_writer.add_scalar("train/total-loss", total_train_loss, iteration)
# record loss scaling
my_writer.add_scalar('train/loss-scale', loss_scale, iteration)
if iteration % args.log_interval == 0:
elapsed_time = timers('interval-time').elapsed()
elapsed_time_per_iteration = elapsed_time / total_iterations
if writer:
if args.log_timers_to_tensorboard:
writer.add_scalar('iteration-time',
elapsed_time_per_iteration, iteration)
log_string = ' iteration {:8d}/{:8d} |'.format(
iteration, args.train_iters)
log_string += ' consumed samples: {:12d} |'.format(
args.consumed_train_samples)
log_string += ' Task: {} |'.format(
args.task)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time_per_iteration * 1000.0)
log_string += ' learning rate: {:.3E} |'.format(learning_rate)
log_string += ' global batch size: {:5d} |'.format(batch_size)
for key in total_loss_dict:
if key not in [advanced_iters_key, skipped_iters_key,
nan_iters_key]:
avg = total_loss_dict[key].item() / \
float(max(1, total_loss_dict[advanced_iters_key]))
if avg > 0.0:
log_string += ' {}: {:.6E} |'.format(key, avg)
total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm)
log_string += ' number of skipped iterations: {:3d} |'.format(
total_loss_dict[skipped_iters_key])
log_string += ' number of nan iterations: {:3d} |'.format(
total_loss_dict[nan_iters_key])
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
print_rank_last(log_string)
if report_memory_flag and learning_rate > 0.:
# Report memory after optimizer state has been initialized.
report_memory('(after {} iterations)'.format(iteration))
report_memory_flag = False
timers.log(timers_to_log, normalizer=args.log_interval)
return report_memory_flag
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
timers = get_timers()
# Extra barrier is added to make sure
# all ranks report the max time.
torch.distributed.barrier()
timers('save-checkpoint').start()
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
torch.distributed.barrier()
timers('save-checkpoint').stop()
timers.log(['save-checkpoint'])
def train(forward_step_func, model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func):
"""Train the model function."""
args = get_args()
timers = get_timers()
# Write args to tensorboard
write_args_to_tensorboard()
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
# Tracking loss.
total_loss_dict = {}
# Iterations.
iteration = args.iteration
timers('interval-time').start()
print_datetime('before the start of training step')
if is_last_rank():
my_writer = SummaryWriter(args.save + "/tb_res")
else:
my_writer = None
report_memory_flag = True
while iteration < args.train_iters:
update_num_microbatches(args.consumed_train_samples)
args.curr_iteration = iteration
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
opt_param_scheduler)
iteration += 1
args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
# Logging.
loss_scale = optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'],
iteration, loss_scale,
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad, my_writer)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
check_adlr_autoresume_termination(iteration, model, optimizer,
opt_param_scheduler)
# Evaluation
if args.eval_interval and iteration % args.eval_interval == 0 and \
args.do_valid:
prefix = 'iteration {}'.format(iteration)
evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func, my_writer,
False)
# Checkpointing
saved_checkpoint = False
if args.exit_signal_handler:
signal_handler = get_signal_handler()
if any(signal_handler.signals_received()):
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after receiving SIGTERM.')
sys.exit()
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
saved_checkpoint = True
# Exiting based on duration
if args.exit_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = torch.cuda.IntTensor(
[train_time > args.exit_duration_in_mins])
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after {} minutes'.format(train_time))
sys.exit()
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime('exiting program at iteration {}'.format(iteration))
sys.exit()
return iteration
def evaluate(forward_step_func,
data_iterator,
model,
process_non_loss_data_func,
verbose=False):
"""Evaluation."""
args = get_args()
if args.vision_pretraining and args.vision_pretraining_type == "dino":
compute_feature_bank(model)
# Turn on evaluation mode which disables dropout.
for model_module in model:
model_module.eval()
total_loss_dict = {}
with torch.no_grad():
iteration = 0
while iteration < args.eval_iters:
iteration += 1
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration,
args.eval_iters))
forward_backward_func = get_forward_backward_func()
loss_dicts = forward_backward_func(
forward_step_func, data_iterator, model, optimizer=None,
timers=None, forward_only=True)
# Empty unused memory
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Reduce across processes.
for loss_dict in loss_dicts:
for key in loss_dict:
if key == "describe":
continue
total_loss_dict[key] = total_loss_dict.get(
key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
* args.micro_batch_size \
* get_num_microbatches()
collected_non_loss_data = None
if process_non_loss_data_func is not None and is_last_rank():
collected_non_loss_data = forward_backward_func(
forward_step_func, data_iterator, model, optimizer=None,
timers=None, forward_only=True, collect_non_loss_data=True)
# Move model back to the train mode.
for model_module in model:
model_module.train()
for key in total_loss_dict:
total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
if "describe" in loss_dict:
total_loss_dict["describe"] = loss_dict["describe"]
return total_loss_dict, collected_non_loss_data
def evaluate_and_print_results(prefix, forward_step_func,
data_iterator, model,
iteration, process_non_loss_data_func, my_writer,
verbose=False):
"""Helper function to evaluate and dump results on screen."""
args = get_args()
writer = get_tensorboard_writer()
total_loss_dict, collected_non_loss_data = evaluate(
forward_step_func, data_iterator, model,
process_non_loss_data_func, verbose)
string = ' validation loss at {} | '.format(prefix)
total_val_loss = 0
for key in total_loss_dict:
if key == "describe":
if isinstance(total_loss_dict["describe"], str):
string += total_loss_dict["describe"]
continue
elif isinstance(total_loss_dict["describe"], dict):
continue
else:
raise "Not Imp"
string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
# ppl = math.exp(min(20, total_loss_dict[key].item()))
# string += '{} PPL: {:.6E} | '.format(key, ppl)
if my_writer and is_last_rank():
my_writer.add_scalar('val/' + key, total_loss_dict[key].item(), iteration)
my_writer.add_scalar('val/' + key + '_ppl', ppl, iteration)
total_val_loss += total_loss_dict[key].item()
# if writer:
# writer.add_scalar('{} validation'.format(key),
# total_loss_dict[key].item(),
# iteration)
# writer.add_scalar('{} validation vs samples'.format(key),
# total_loss_dict[key].item(),
# args.consumed_train_samples)
# if args.log_validation_ppl_to_tensorboard:
# writer.add_scalar('{} validation ppl'.format(key), ppl,
# iteration)
# writer.add_scalar('{} validation ppl vs samples'.format(key),
# ppl, args.consumed_train_samples)
if process_non_loss_data_func is not None and writer and is_last_rank():
process_non_loss_data_func(collected_non_loss_data, iteration, writer)
if my_writer and is_last_rank():
my_writer.add_scalar("val/total-loss", total_val_loss, iteration)
length = len(string) + 1
print_rank_last('-' * length)
print_rank_last(string)
if "describe" in total_loss_dict and isinstance(total_loss_dict["describe"], dict):
for k, v in total_loss_dict["describe"].items():
out_str = " : ".join([k, v])
print_rank_last(out_str)
print_rank_last('-' * length)
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_train_valid_test_data_iterators(
build_train_valid_test_datasets_provider):
"""XXX"""
args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Backward compatibility, assume fixed batch size.
if args.iteration > 0 and args.consumed_train_samples == 0:
assert args.train_samples is None, \
'only backward compatiblity support for iteration-based training'
args.consumed_train_samples = args.iteration * args.global_batch_size
if args.iteration > 0 and args.consumed_valid_samples == 0:
if args.train_samples is None:
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
args.eval_iters * args.global_batch_size
# Data loader only on rank 0 of each model parallel group.
if mpu.get_tensor_model_parallel_rank() == 0:
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
else:
train_samples = args.train_iters * args.global_batch_size
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
# Build dataloders.
train_dataloader = build_pretraining_data_loader(
train_ds, args.consumed_train_samples)
valid_dataloader = build_pretraining_data_loader(
valid_ds, args.consumed_valid_samples)
test_dataloader = build_pretraining_data_loader(test_ds, 0)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0
do_valid = valid_dataloader is not None and args.eval_iters > 0
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.cuda.LongTensor(
[int(do_train), int(do_valid), int(do_test)])
else:
flags = torch.cuda.LongTensor([0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
# Build iterators.
dl_type = args.dataloader_type
assert dl_type in ['single', 'cyclic']
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator