# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Input/output checkpointing.""" import os import random import sys import numpy as np import torch from megatron import (mpu, update_num_microbatches) from .global_vars import get_args from .utils import (unwrap_model, print_rank_0) _CHECKPOINT_VERSION = None def set_checkpoint_version(value): global _CHECKPOINT_VERSION if _CHECKPOINT_VERSION is not None: assert _CHECKPOINT_VERSION == value, \ "checkpoint versions do not match" _CHECKPOINT_VERSION = value def get_checkpoint_version(): global _CHECKPOINT_VERSION return _CHECKPOINT_VERSION def check_checkpoint_args(checkpoint_args): """Ensure fixed arguments for a model are the same for the input arguments and the one retrieved from checkpoint.""" args = get_args() def _compare(arg_name, old_arg_name=None): if old_arg_name is not None: checkpoint_value = getattr(checkpoint_args, old_arg_name) else: checkpoint_value = getattr(checkpoint_args, arg_name) args_value = getattr(args, arg_name) error_message = '{} value from checkpoint ({}) is not equal to the ' \ 'input argument value ({}).'.format( arg_name, checkpoint_value, args_value) assert checkpoint_value == args_value, error_message _compare('num_layers') _compare('hidden_size') _compare('num_attention_heads') if args.vocab_file: _compare('max_position_embeddings') _compare('make_vocab_size_divisible_by') _compare('padded_vocab_size') _compare('tokenizer_type') if args.data_parallel_random_init: _compare('data_parallel_random_init') if get_checkpoint_version() < 3.0: _compare('tensor_model_parallel_size', old_arg_name='model_parallel_size') if get_checkpoint_version() >= 3.0: _compare('tensor_model_parallel_size') _compare('pipeline_model_parallel_size') def ensure_directory_exists(filename): """Build filename's path if it does not already exists.""" dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) def get_checkpoint_names(checkpoints_path, iteration, use_distributed_optimizer, release=False, pipeline_parallel=None, tensor_rank=None, pipeline_rank=None): """Determine the directory name for this rank's checkpoint.""" if release: directory = 'release' else: directory = 'iter_{:07d}'.format(iteration) # Use both the tensor and pipeline MP rank. if pipeline_parallel is None: pipeline_parallel = (mpu.get_pipeline_model_parallel_world_size() > 1) if tensor_rank is None: tensor_rank = mpu.get_tensor_model_parallel_rank() if pipeline_rank is None: pipeline_rank = mpu.get_pipeline_model_parallel_rank() # Use both the tensor and pipeline MP rank. If using the distributed # optimizer, then the optimizer's path must additionally include the # data parallel rank. if not pipeline_parallel: common_path = os.path.join(checkpoints_path, directory, f'mp_rank_{tensor_rank:02d}') else: common_path = os.path.join(checkpoints_path, directory, f'mp_rank_{tensor_rank:02d}_{pipeline_rank:03d}') if use_distributed_optimizer: model_name = os.path.join(common_path, "model_rng.pt") optim_name = os.path.join( common_path + "_%03d" % mpu.get_data_parallel_rank(), "optim.pt") else: model_name = optim_name = os.path.join(common_path, "model_optim_rng.pt") return model_name, optim_name def find_checkpoint_rank_0(checkpoints_path, iteration, use_distributed_optimizer, release=False): """Finds the checkpoint for rank 0 without knowing if we are using pipeline parallelism or not. Since the checkpoint naming scheme changes if pipeline parallelism is present, we need to look for both naming schemes if we don't know if the checkpoint has pipeline parallelism. """ # Look for checkpoint with no pipelining filenames = get_checkpoint_names(checkpoints_path, iteration, use_distributed_optimizer, release, pipeline_parallel=False, tensor_rank=0, pipeline_rank=0) if os.path.isfile(filenames[0]): return filenames # Look for checkpoint with pipelining filenames = get_checkpoint_names(checkpoints_path, iteration, use_distributed_optimizer, release, pipeline_parallel=True, tensor_rank=0, pipeline_rank=0) if os.path.isfile(filenames[0]): return filenames return None, None def get_checkpoint_tracker_filename(checkpoints_path): """Tracker file rescords the latest chckpoint during training to restart from.""" return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt') def read_metadata(tracker_filename): # Read the tracker file and either set the iteration or # mark it as a release checkpoint. iteration = 0 release = False with open(tracker_filename, 'r') as f: metastring = f.read().strip() try: iteration = int(metastring) except ValueError: release = metastring == 'release' if not release: print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format( tracker_filename)) sys.exit() assert iteration > 0 or release, 'error parsing metadata file {}'.format( tracker_filename) # Get the max iteration retrieved across the ranks. if torch.distributed.is_initialized(): iters_cuda = torch.cuda.LongTensor([iteration]) torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX) max_iter = iters_cuda[0].item() # We should now have all the same iteration. # If not, print a warning and chose the maximum # iteration across all ranks. if iteration != max_iter: print('WARNING: on rank {} found iteration {} in the ' 'metadata while max iteration across the ranks ' 'is {}, replacing it with max iteration.'.format( rank, iteration, max_iter), flush=True) else: # When loading a checkpoint outside of training (for example, # when editing it), we might not have torch distributed # initialized, in this case, just assume we have the latest max_iter = iteration return max_iter, release def get_rng_state(): """ collect rng state across data parallel ranks """ args = get_args() rng_state = { 'random_rng_state': random.getstate(), 'np_rng_state': np.random.get_state(), 'torch_rng_state': torch.get_rng_state(), 'cuda_rng_state': torch.cuda.get_rng_state(), 'rng_tracker_states': mpu.get_cuda_rng_tracker().get_states()} rng_state_list = None if torch.distributed.is_initialized() and \ mpu.get_data_parallel_world_size() > 1 and \ args.data_parallel_random_init: rng_state_list = \ [None for i in range(mpu.get_data_parallel_world_size())] torch.distributed.all_gather_object( rng_state_list, rng_state, group=mpu.get_data_parallel_group()) else: rng_state_list = [rng_state] return rng_state_list def save_checkpoint(iteration, model, optimizer, opt_param_scheduler): """Save a model checkpoint.""" args = get_args() # Only rank zero of the data parallel writes to the disk. model = unwrap_model(model) print_rank_0('saving checkpoint at iteration {:7d} to {}'.format( iteration, args.save)) # Collect rng state across data parallel ranks. rng_state = get_rng_state() # Checkpoint file names. model_checkpoint_name, optim_checkpoint_name = \ get_checkpoint_names(args.save, iteration, args.use_distributed_optimizer) # Collect args, model, RNG. model_state_dict = {} if not torch.distributed.is_initialized() \ or mpu.get_data_parallel_rank() == 0: # Arguments, iteration, and model. model_state_dict['args'] = args model_state_dict['checkpoint_version'] = 3.0 model_state_dict['iteration'] = iteration if len(model) == 1: model_state_dict['model'] = model[0].state_dict_for_save_checkpoint() else: for i in range(len(model)): mpu.set_virtual_pipeline_model_parallel_rank(i) model_state_dict['model%d' % i] = \ model[i].state_dict_for_save_checkpoint() # RNG states. if not args.no_save_rng: model_state_dict["rng_state"] = rng_state # Collect optimizer state. (Optimizer is saved separately from the model, due # to the conflicting data pattern when using the distributed optimizer.) optim_state_dict = {} if not args.no_save_optim \ and (not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0 or args.use_distributed_optimizer): # Optimizer stuff. if optimizer is not None: optim_state_dict['optimizer'] = optimizer.state_dict() if opt_param_scheduler is not None: optim_state_dict['opt_param_scheduler'] = \ opt_param_scheduler.state_dict() # Save. if args.use_distributed_optimizer: # Save model separate from optimizer. if model_state_dict: ensure_directory_exists(model_checkpoint_name) torch.save(model_state_dict, model_checkpoint_name) if optim_state_dict: ensure_directory_exists(optim_checkpoint_name) torch.save(optim_state_dict, optim_checkpoint_name) else: # Save model and optimizer together. state_dict = {**model_state_dict, **optim_state_dict} if state_dict: # only saves if populated (i.e., inherits conditions above) ensure_directory_exists(model_checkpoint_name) torch.save(state_dict, model_checkpoint_name) # Wait so everyone is done (necessary) if torch.distributed.is_initialized(): torch.distributed.barrier() print_rank_0(' successfully saved checkpoint at iteration {:7d} to {}'.format( iteration, args.save)) # And update the latest iteration if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0: tracker_filename = get_checkpoint_tracker_filename(args.save) with open(tracker_filename, 'w') as f: f.write(str(iteration)) # Wait so everyone is done (not necessary) if torch.distributed.is_initialized(): torch.distributed.barrier() def _transpose_first_dim(t, num_splits, num_splits_first, model): input_shape = t.size() # We use a self_attention module but the values extracted aren't # specific to self attention so should work for cross attention as well while hasattr(model, 'module'): model = model.module attention_module = model.language_model.encoder.layers[0].self_attention hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition if num_splits_first: """[num_splits * np * hn, h] -->(view) [num_splits, np, hn, h] -->(tranpose) [np, num_splits, hn, h] -->(view) [np * num_splits * hn, h] """ intermediate_shape = \ (num_splits, num_attention_heads_per_partition, hidden_size_per_attention_head) + input_shape[1:] t = t.view(*intermediate_shape) t = t.transpose(0, 1).contiguous() else: """[np * hn * num_splits, h] -->(view) [np, hn, num_splits, h] -->(tranpose) [np, num_splits, hn, h] -->(view) [np * num_splits * hn, h] """ intermediate_shape = \ (num_attention_heads_per_partition, hidden_size_per_attention_head, num_splits) +\ input_shape[1:] t = t.view(*intermediate_shape) t = t.transpose(1, 2).contiguous() t = t.view(*input_shape) return t def fix_query_key_value_ordering(model, checkpoint_version): """Fix up query/key/value matrix ordering if checkpoint version is smaller than 2.0 """ if checkpoint_version < 2.0: if isinstance(model, list): assert len(model)==1 model = model[0] for name, param in model.named_parameters(): if name.endswith(('.query_key_value.weight', '.query_key_value.bias')): if checkpoint_version == 0: fixed_param = _transpose_first_dim(param.data, 3, True, model) elif checkpoint_version == 1.0: fixed_param = _transpose_first_dim(param.data, 3, False, model) else: print_rank_0(f"Invalid checkpoint version {checkpoint_version}.") sys.exit() param.data.copy_(fixed_param) if name.endswith(('.key_value.weight', '.key_value.bias')): if checkpoint_version == 0: fixed_param = _transpose_first_dim(param.data, 2, True, model) elif checkpoint_version == 1.0: fixed_param = _transpose_first_dim(param.data, 2, False, model) else: print_rank_0(f"Invalid checkpoint version {checkpoint_version}.") sys.exit() param.data.copy_(fixed_param) print_rank_0(" succesfully fixed query-key-values ordering for" " checkpoint version {}".format(checkpoint_version)) def _load_base_checkpoint(load_dir, use_distributed_optimizer, rank0=False): """ Load the base state_dict from the given directory If rank0 is true, just loads rank 0 checkpoint, ignoring arguments. """ # Read the tracker file and set the iteration. tracker_filename = get_checkpoint_tracker_filename(load_dir) # If no tracker file, return nothing if not os.path.isfile(tracker_filename): if not rank0: print_rank_0('WARNING: could not find the metadata file {} '.format( tracker_filename)) print_rank_0(' will not load any checkpoints and will start from ' 'random') return None, None, False # Otherwise, read the tracker file and either set the iteration or # mark it as a release checkpoint. iteration, release = read_metadata(tracker_filename) # Checkpoint. if rank0: checkpoint_names = find_checkpoint_rank_0(load_dir, iteration, use_distributed_optimizer, release) else: checkpoint_names = get_checkpoint_names(load_dir, iteration, use_distributed_optimizer, release) if release: print_rank_0(f' loading release checkpoint from {load_dir}') else: print_rank_0(f' loading checkpoint from {load_dir} at iteration {iteration}') model_checkpoint_name, optim_checkpoint_name = checkpoint_names # Load the checkpoint. try: model_state_dict = torch.load(model_checkpoint_name, map_location='cpu') if use_distributed_optimizer: optim_state_dict = torch.load(optim_checkpoint_name, map_location='cpu') else: optim_state_dict = model_state_dict except ModuleNotFoundError: from megatron.fp16_deprecated import loss_scaler # For backward compatibility. if not rank0: print_rank_0(' > deserializing using the old code structure ...') sys.modules['fp16.loss_scaler'] = sys.modules[ 'megatron.fp16_deprecated.loss_scaler'] sys.modules['megatron.fp16.loss_scaler'] = sys.modules[ 'megatron.fp16_deprecated.loss_scaler'] model_state_dict = torch.load(model_checkpoint_name, map_location='cpu') optim_state_dict = torch.load(optim_checkpoint_name, map_location='cpu') sys.modules.pop('fp16.loss_scaler', None) sys.modules.pop('megatron.fp16.loss_scaler', None) except BaseException as e: print_rank_0('could not load the checkpoint') print_rank_0(e) sys.exit() return model_state_dict, optim_state_dict, release def load_args_from_checkpoint(args, load_arg='load'): """Set required arguments from the checkpoint specified in the arguments. Will overwrite arguments that have a non-None default value, but will leave any arguments that default to None as set. Returns the same args NameSpace with the new values added/updated. If no checkpoint is specified in args, or if the checkpoint is there but invalid, the arguments will not be modified """ load_dir = getattr(args, load_arg) if load_dir is None: print_rank_0('No load directory specified, using provided arguments.') return args model_state_dict, optim_state_dict, release = \ _load_base_checkpoint(load_dir, use_distributed_optimizer=args.use_distributed_optimizer, rank0=True) # For args we only care about model state dict state_dict = model_state_dict if not state_dict: print_rank_0('Checkpoint not found to provide arguments, using provided arguments.') return args if 'args' not in state_dict: print_rank_0('Checkpoint provided does not have arguments saved, using provided arguments.') return args checkpoint_args = state_dict['args'] checkpoint_version = state_dict.get('checkpoint_version', 0) args.iteration = state_dict['iteration'] def _set_arg(arg_name, old_arg_name=None, force=False): if not force and getattr(args, arg_name, None) is not None: return if old_arg_name is not None: checkpoint_value = getattr(checkpoint_args, old_arg_name, None) else: checkpoint_value = getattr(checkpoint_args, arg_name, None) if checkpoint_value is not None: print_rank_0(f"Setting {arg_name} to {checkpoint_value} from checkpoint") setattr(args, arg_name, checkpoint_value) _set_arg('num_layers') _set_arg('hidden_size') _set_arg('ffn_hidden_size') _set_arg('seq_length') _set_arg('num_attention_heads') _set_arg('kv_channels') _set_arg('max_position_embeddings') _set_arg('tokenizer_type') _set_arg('padded_vocab_size') if checkpoint_version < 3.0: _set_arg('tensor_model_parallel_size', 'model_parallel_size') else: _set_arg('tensor_model_parallel_size', force=True) _set_arg('pipeline_model_parallel_size', force=True) _set_arg('num_layers_per_virtual_pipeline_stage') return args def load_checkpoint(model, optimizer, opt_param_scheduler, load_arg='load', strict=True): """Load a model checkpoint and return the iteration. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` of the checkpoint match the names of parameters and buffers in model. """ args = get_args() load_dir = getattr(args, load_arg) model = unwrap_model(model) model_state_dict, optim_state_dict, release = \ _load_base_checkpoint(load_dir, use_distributed_optimizer=args.use_distributed_optimizer, rank0=False) if model_state_dict is None: return 0 # set checkpoint version set_checkpoint_version(model_state_dict.get('checkpoint_version', 0)) # Set iteration. if args.finetune or release: iteration = 0 else: try: iteration = model_state_dict['iteration'] except KeyError: try: # Backward compatible with older checkpoints iteration = model_state_dict['total_iters'] except KeyError: print_rank_0('A metadata file exists but unable to load ' 'iteration from checkpoint {}, exiting'.format( checkpoint_name)) sys.exit() # Check arguments. assert args.consumed_train_samples == 0 assert args.consumed_valid_samples == 0 if 'args' in model_state_dict: checkpoint_args = model_state_dict['args'] check_checkpoint_args(checkpoint_args) args.consumed_train_samples = getattr(checkpoint_args, 'consumed_train_samples', 0) update_num_microbatches(consumed_samples=args.consumed_train_samples) args.consumed_valid_samples = getattr(checkpoint_args, 'consumed_valid_samples', 0) else: print_rank_0('could not find arguments in the checkpoint ...') # Model. if len(model) == 1: model[0].load_state_dict(model_state_dict['model'], strict=strict) else: for i in range(len(model)): mpu.set_virtual_pipeline_model_parallel_rank(i) model[i].load_state_dict(model_state_dict['model%d' % i], strict=strict) # Fix up query/key/value matrix ordering if needed checkpoint_version = get_checkpoint_version() print_rank_0(f' checkpoint version {checkpoint_version}') fix_query_key_value_ordering(model, checkpoint_version) # Optimizer. if not release and not args.finetune and not args.no_load_optim: try: if optimizer is not None: optimizer.load_state_dict(optim_state_dict['optimizer']) if opt_param_scheduler is not None: if 'lr_scheduler' in optim_state_dict: # backward compatbility opt_param_scheduler.load_state_dict(optim_state_dict['lr_scheduler']) else: opt_param_scheduler.load_state_dict(optim_state_dict['opt_param_scheduler']) except KeyError: print_rank_0('Unable to load optimizer from checkpoint {}. ' 'Specify --no-load-optim or --finetune to prevent ' 'attempting to load the optimizer state, ' 'exiting ...'.format(checkpoint_name)) sys.exit() # rng states. if not release and not args.finetune and not args.no_load_rng: try: if 'rng_state' in model_state_dict: # access rng_state for data parallel rank if args.data_parallel_random_init: rng_state = model_state_dict['rng_state'][mpu.get_data_parallel_rank()] else: rng_state = model_state_dict['rng_state'][0] random.setstate(rng_state['random_rng_state']) np.random.set_state(rng_state['np_rng_state']) torch.set_rng_state(rng_state['torch_rng_state']) torch.cuda.set_rng_state(rng_state['cuda_rng_state']) # Check for empty states array if not rng_state['rng_tracker_states']: raise KeyError mpu.get_cuda_rng_tracker().set_states( rng_state['rng_tracker_states']) else: # backward compatability random.setstate(model_state_dict['random_rng_state']) np.random.set_state(model_state_dict['np_rng_state']) torch.set_rng_state(model_state_dict['torch_rng_state']) torch.cuda.set_rng_state(model_state_dict['cuda_rng_state']) # Check for empty states array if not model_state_dict['rng_tracker_states']: raise KeyError mpu.get_cuda_rng_tracker().set_states( model_state_dict['rng_tracker_states']) except KeyError: print_rank_0('Unable to load rng state from checkpoint {}. ' 'Specify --no-load-rng or --finetune to prevent ' 'attempting to load the rng state, ' 'exiting ...'.format(checkpoint_name)) sys.exit() # Some utilities want to load a checkpoint without distributed being initialized if torch.distributed.is_initialized(): torch.distributed.barrier() print_rank_0(f' successfully loaded checkpoint from {args.load} ' f'at iteration {iteration}') return iteration def load_biencoder_checkpoint(model, only_query_model=False, only_context_model=False, custom_load_path=None): """ selectively load retrieval models for indexing/retrieving from saved checkpoints """ args = get_args() model = unwrap_model(model) load_path = custom_load_path if custom_load_path is not None else args.load tracker_filename = get_checkpoint_tracker_filename(load_path) with open(tracker_filename, 'r') as f: iteration = int(f.read().strip()) checkpoint_name, _ = get_checkpoint_names(load_path, iteration, args.use_distributed_optimizer, release=False) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format( torch.distributed.get_rank(), checkpoint_name)) state_dict = torch.load(model_checkpoint_name, map_location='cpu') ret_state_dict = state_dict['model'] if only_query_model: ret_state_dict.pop('context_model') if only_context_model: ret_state_dict.pop('query_model') assert len(model) == 1 model[0].load_state_dict(ret_state_dict) torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return model