# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .initialize import get_tensor_model_parallel_group, get_tensor_model_parallel_world_size, get_tensor_model_parallel_rank from .utils import split_tensor_along_last_dim def _reduce(input_): """All-reduce the input tensor across model parallel group.""" # Bypass the function if we are using only 1 GPU. if get_tensor_model_parallel_world_size()==1: return input_ # All-reduce. torch.distributed.all_reduce(input_, group=get_tensor_model_parallel_group()) return input_ def _split_along_last_dim(input_): """Split the tensor along its last dimension and keep the corresponding slice.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ # Split along last dimension. input_list = split_tensor_along_last_dim(input_, world_size) # Note: torch.split does not create contiguous tensors by default. rank = get_tensor_model_parallel_rank() output = input_list[rank].contiguous() return output def _split_along_first_dim(input_): """Split the tensor along its first dimension and keep the corresponding slice.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ # Split along first dimension. dim_size = input_.size()[0] assert dim_size % world_size == 0, \ "First dimension of the tensor should be divisible by tensor parallel size" local_dim_size = dim_size // world_size rank = get_tensor_model_parallel_rank() dim_offset = rank * local_dim_size output = input_[dim_offset:dim_offset+local_dim_size].contiguous() return output def _gather_along_last_dim(input_): """Gather tensors and concatinate along the last dimension.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ # Size and dimension. last_dim = input_.dim() - 1 rank = get_tensor_model_parallel_rank() tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ torch.distributed.all_gather(tensor_list, input_, group=get_tensor_model_parallel_group()) # Note: torch.cat already creates a contiguous tensor. output = torch.cat(tensor_list, dim=last_dim).contiguous() return output def _gather_along_first_dim(input_): """Gather tensors and concatinate along the first dimension.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ dim_size = list(input_.size()) dim_size[0] = dim_size[0] * world_size output = torch.empty(dim_size, dtype=input_.dtype, device=torch.cuda.current_device()) torch.distributed._all_gather_base(output, input_.contiguous(), group=get_tensor_model_parallel_group()) return output def _reduce_scatter_along_first_dim(input_): """Reduce-scatter the input tensor across model parallel group.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ dim_size = list(input_.size()) assert dim_size[0] % world_size == 0, \ "First dimension of the tensor should be divisible by tensor parallel size" dim_size[0] = dim_size[0] // world_size output = torch.empty(dim_size, dtype=input_.dtype, device=torch.cuda.current_device()) torch.distributed._reduce_scatter_base(output, input_.contiguous(), group=get_tensor_model_parallel_group()) return output class _CopyToModelParallelRegion(torch.autograd.Function): """Pass the input to the model parallel region.""" @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_): return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output) class _ReduceFromModelParallelRegion(torch.autograd.Function): """All-reduce the input from the model parallel region.""" @staticmethod def symbolic(graph, input_): return _reduce(input_) @staticmethod def forward(ctx, input_): return _reduce(input_) @staticmethod def backward(ctx, grad_output): return grad_output class _ScatterToModelParallelRegion(torch.autograd.Function): """Split the input and keep only the corresponding chuck to the rank.""" @staticmethod def symbolic(graph, input_): return _split_along_last_dim(input_) @staticmethod def forward(ctx, input_): return _split_along_last_dim(input_) @staticmethod def backward(ctx, grad_output): return _gather_along_last_dim(grad_output) class _GatherFromModelParallelRegion(torch.autograd.Function): """Gather the input from model parallel region and concatinate.""" @staticmethod def symbolic(graph, input_): return _gather_along_last_dim(input_) @staticmethod def forward(ctx, input_): return _gather_along_last_dim(input_) @staticmethod def backward(ctx, grad_output): return _split_along_last_dim(grad_output) class _ScatterToSequenceParallelRegion(torch.autograd.Function): """Split the input and keep only the corresponding chuck to the rank.""" @staticmethod def symbolic(graph, input_): return _split_along_first_dim(input_) @staticmethod def forward(ctx, input_): return _split_along_first_dim(input_) @staticmethod def backward(ctx, grad_output): return _gather_along_first_dim(grad_output) class _GatherFromSequenceParallelRegion(torch.autograd.Function): """Gather the input from sequence parallel region and concatinate.""" @staticmethod def symbolic(graph, input_, tensor_parallel_output_grad=True): return _gather_along_first_dim(input_) @staticmethod def forward(ctx, input_, tensor_parallel_output_grad=True): ctx.tensor_parallel_output_grad = tensor_parallel_output_grad return _gather_along_first_dim(input_) @staticmethod def backward(ctx, grad_output): tensor_parallel_output_grad = ctx.tensor_parallel_output_grad # If the computation graph after the gather operation is # in the tensor parallel mode, output gradients need to reduce # scattered and whereas if the computation is duplicated, # output gradients need to be scattered. if tensor_parallel_output_grad: return _reduce_scatter_along_first_dim(grad_output), None else: return _split_along_first_dim(grad_output), None class _ReduceScatterToSequenceParallelRegion(torch.autograd.Function): """Reduce scatter the input from the model parallel region.""" @staticmethod def symbolic(graph, input_): return _reduce_scatter_along_first_dim(input_) @staticmethod def forward(ctx, input_): return _reduce_scatter_along_first_dim(input_) @staticmethod def backward(ctx, grad_output): return _gather_along_first_dim(grad_output) # ----------------- # Helper functions. # ----------------- def copy_to_tensor_model_parallel_region(input_): return _CopyToModelParallelRegion.apply(input_) def reduce_from_tensor_model_parallel_region(input_): return _ReduceFromModelParallelRegion.apply(input_) def scatter_to_tensor_model_parallel_region(input_): return _ScatterToModelParallelRegion.apply(input_) def gather_from_tensor_model_parallel_region(input_): return _GatherFromModelParallelRegion.apply(input_) def scatter_to_sequence_parallel_region(input_): return _ScatterToSequenceParallelRegion.apply(input_) def gather_from_sequence_parallel_region(input_, tensor_parallel_output_grad=True): return _GatherFromSequenceParallelRegion.apply(input_, tensor_parallel_output_grad) def reduce_scatter_to_sequence_parallel_region(input_): return _ReduceScatterToSequenceParallelRegion.apply(input_)