hdallatorre commited on
Commit
62ceedb
1 Parent(s): a2ae43a

Upload SegmentNT

Browse files
Files changed (4) hide show
  1. config.json +36 -0
  2. modeling_segment_nt.py +1498 -0
  3. pytorch_model.bin +3 -0
  4. segment_nt_config.py +261 -0
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bias_fnn": false,
3
+ "architectures": [
4
+ "SegmentNT"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "segment_nt_config.SegmentNTConfig",
9
+ "AutoModel": "modeling_segment_nt.SegmentNT"
10
+ },
11
+ "emb_layer_norm_before": false,
12
+ "esmfold_config": null,
13
+ "hidden_dropout_prob": 0.0,
14
+ "hidden_size": 1024,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "is_folding_model": false,
18
+ "layer_norm_eps": 1e-12,
19
+ "mask_token_id": 2,
20
+ "max_position_embeddings": 2050,
21
+ "model_type": "esm",
22
+ "num_attention_heads": 16,
23
+ "num_features": 14,
24
+ "num_hidden_layers": 29,
25
+ "num_layers_head": 2,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "rotary",
28
+ "rescaling_factor": null,
29
+ "tie_word_embeddings": false,
30
+ "token_dropout": false,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.33.2",
33
+ "use_cache": false,
34
+ "vocab_list": null,
35
+ "vocab_size": 4107
36
+ }
modeling_segment_nt.py ADDED
@@ -0,0 +1,1498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch ESM model."""
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, SiLU
25
+ from transformers.file_utils import (
26
+ add_code_sample_docstrings,
27
+ add_start_docstrings,
28
+ add_start_docstrings_to_model_forward,
29
+ )
30
+ from transformers.modeling_outputs import (
31
+ BaseModelOutputWithPastAndCrossAttentions,
32
+ BaseModelOutputWithPoolingAndCrossAttentions,
33
+ MaskedLMOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ )
37
+ from transformers.modeling_utils import (
38
+ PreTrainedModel,
39
+ find_pruneable_heads_and_indices,
40
+ prune_linear_layer,
41
+ )
42
+ from transformers.utils import logging
43
+
44
+ from .segment_nt_config import SegmentNTConfig
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ _CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
49
+ _CONFIG_FOR_DOC = "SegmentNTConfig"
50
+
51
+ ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
52
+ "facebook/esm2_t6_8M_UR50D",
53
+ "facebook/esm2_t12_35M_UR50D",
54
+ # This is not a complete list of all ESM models!
55
+ # See all ESM models at https://huggingface.co/models?filter=esm
56
+ ]
57
+
58
+
59
+ def rotate_half(x):
60
+ x1, x2 = x.chunk(2, dim=-1)
61
+ return torch.cat((-x2, x1), dim=-1)
62
+
63
+
64
+ def apply_rotary_pos_emb(x, cos, sin):
65
+ cos = cos[:, :, : x.shape[-2], :]
66
+ sin = sin[:, :, : x.shape[-2], :]
67
+
68
+ return (x * cos) + (rotate_half(x) * sin)
69
+
70
+
71
+ def gelu(x):
72
+ """
73
+ This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
74
+ """
75
+ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
76
+
77
+
78
+ def symmetrize(x):
79
+ "Make layer symmetric in final two dimensions, used for contact prediction."
80
+ return x + x.transpose(-1, -2)
81
+
82
+
83
+ def average_product_correct(x):
84
+ "Perform average product correct, used for contact prediction."
85
+ a1 = x.sum(-1, keepdims=True)
86
+ a2 = x.sum(-2, keepdims=True)
87
+ a12 = x.sum((-1, -2), keepdims=True)
88
+
89
+ avg = a1 * a2
90
+ avg.div_(a12) # in-place to reduce memory
91
+ normalized = x - avg
92
+ return normalized
93
+
94
+ @dataclass
95
+ class RotaryEmbeddingConfig:
96
+ """
97
+ Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
98
+ to adapt the rotary embeddings to larger lengths than what was used for training.
99
+ One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
100
+
101
+ Args:
102
+
103
+ """
104
+
105
+ rescaling_factor: Optional[float]
106
+
107
+ class RotaryEmbedding(torch.nn.Module):
108
+ """
109
+ Rotary position embeddings based on those in
110
+ [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
111
+ matrices which depend on their relative positions.
112
+ """
113
+
114
+ def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfig):
115
+ super().__init__()
116
+
117
+ # Extract argument from the config
118
+ rescaling_factor = rotary_embedding_config.rescaling_factor
119
+ upper_freq = 10000
120
+
121
+ if rescaling_factor is None:
122
+ inv_freq = 1.0 / (upper_freq ** (torch.arange(0, dim, 2).float() / dim))
123
+ else:
124
+ updated_base = upper_freq * (
125
+ rescaling_factor ** (dim / (dim - 2))
126
+ )
127
+ inv_freq = 1.0 / (
128
+ updated_base ** (torch.arange(0, dim, 2).float() / dim)
129
+ )
130
+
131
+ self.register_buffer("inv_freq", inv_freq)
132
+
133
+ self._seq_len_cached = None
134
+ self._cos_cached = None
135
+ self._sin_cached = None
136
+
137
+ def _update_cos_sin_tables(self, x, seq_dimension=2):
138
+ seq_len = x.shape[seq_dimension]
139
+
140
+ # Reset the tables if the sequence length has changed,
141
+ # or if we're on a new device (possibly due to tracing for instance)
142
+ if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
143
+ self._seq_len_cached = seq_len
144
+ t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
145
+ self.inv_freq
146
+ )
147
+ freqs = torch.outer(t, self.inv_freq)
148
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
149
+
150
+ self._cos_cached = emb.cos()[None, None, :, :]
151
+ self._sin_cached = emb.sin()[None, None, :, :]
152
+
153
+ return self._cos_cached, self._sin_cached
154
+
155
+ def forward(
156
+ self, q: torch.Tensor, k: torch.Tensor
157
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
158
+ self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
159
+ k, seq_dimension=-2
160
+ )
161
+
162
+ return (
163
+ apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
164
+ apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
165
+ )
166
+
167
+
168
+ class EsmContactPredictionHead(nn.Module):
169
+ """Performs symmetrization, apc, and computes a logistic regression on the output features"""
170
+
171
+ def __init__(
172
+ self,
173
+ in_features: int,
174
+ bias=True,
175
+ eos_idx: int = 2,
176
+ ):
177
+ super().__init__()
178
+ self.in_features = in_features
179
+ self.eos_idx = eos_idx
180
+ self.regression = nn.Linear(in_features, 1, bias)
181
+ self.activation = nn.Sigmoid()
182
+
183
+ def forward(self, tokens, attentions):
184
+ # remove eos token attentions
185
+ eos_mask = tokens.ne(self.eos_idx).to(attentions)
186
+ eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
187
+ attentions = attentions * eos_mask[:, None, None, :, :]
188
+ attentions = attentions[..., :-1, :-1]
189
+ # remove cls token attentions
190
+ attentions = attentions[..., 1:, 1:]
191
+ batch_size, layers, heads, seqlen, _ = attentions.size()
192
+ attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
193
+
194
+ # features: batch x channels x tokens x tokens (symmetric)
195
+ attentions = attentions.to(
196
+ self.regression.weight.device
197
+ ) # attentions always float32, may need to convert to float16
198
+ attentions = average_product_correct(symmetrize(attentions))
199
+ attentions = attentions.permute(0, 2, 3, 1)
200
+ return self.activation(self.regression(attentions).squeeze(3))
201
+
202
+
203
+ class EsmEmbeddings(nn.Module):
204
+ """
205
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
206
+ """
207
+
208
+ def __init__(self, config):
209
+ super().__init__()
210
+ self.word_embeddings = nn.Embedding(
211
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
212
+ )
213
+
214
+ if config.emb_layer_norm_before:
215
+ self.layer_norm = nn.LayerNorm(
216
+ config.hidden_size, eps=config.layer_norm_eps
217
+ )
218
+ else:
219
+ self.layer_norm = None
220
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
221
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
222
+ self.position_embedding_type = getattr(
223
+ config, "position_embedding_type", "absolute"
224
+ )
225
+ self.register_buffer(
226
+ "position_ids",
227
+ torch.arange(config.max_position_embeddings).expand((1, -1)),
228
+ persistent=False,
229
+ )
230
+
231
+ self.padding_idx = config.pad_token_id
232
+ self.position_embeddings = nn.Embedding(
233
+ config.max_position_embeddings,
234
+ config.hidden_size,
235
+ padding_idx=self.padding_idx,
236
+ )
237
+ self.token_dropout = config.token_dropout
238
+ self.mask_token_id = config.mask_token_id
239
+
240
+ def forward(
241
+ self,
242
+ input_ids=None,
243
+ attention_mask=None,
244
+ position_ids=None,
245
+ inputs_embeds=None,
246
+ past_key_values_length=0,
247
+ ):
248
+ if position_ids is None:
249
+ if input_ids is not None:
250
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
251
+ position_ids = create_position_ids_from_input_ids(
252
+ input_ids, self.padding_idx, past_key_values_length
253
+ )
254
+ else:
255
+ position_ids = self.create_position_ids_from_inputs_embeds(
256
+ inputs_embeds
257
+ )
258
+
259
+ if inputs_embeds is None:
260
+ inputs_embeds = self.word_embeddings(input_ids)
261
+
262
+ # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
263
+ # embedding_scale factor here.
264
+ embeddings = inputs_embeds
265
+
266
+ # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
267
+ # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
268
+ # masked tokens are treated as if they were selected for input dropout and zeroed out.
269
+ # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
270
+ # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
271
+ # This is analogous to the way that dropout layers scale down outputs during evaluation when not
272
+ # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
273
+ if self.token_dropout:
274
+ embeddings.masked_fill_(
275
+ (input_ids == self.mask_token_id).unsqueeze(-1), 0.0
276
+ )
277
+ mask_ratio_train = (
278
+ 0.15 * 0.8
279
+ ) # Hardcoded as the ratio used in all ESM model training runs
280
+ src_lengths = attention_mask.sum(-1)
281
+ mask_ratio_observed = (input_ids == self.mask_token_id).sum(
282
+ -1
283
+ ).float() / src_lengths
284
+ embeddings = (
285
+ embeddings
286
+ * (1 - mask_ratio_train)
287
+ / (1 - mask_ratio_observed)[:, None, None]
288
+ ).to(embeddings.dtype)
289
+
290
+ if self.position_embedding_type == "absolute":
291
+ position_embeddings = self.position_embeddings(position_ids)
292
+ embeddings += position_embeddings
293
+
294
+ if self.layer_norm is not None:
295
+ embeddings = self.layer_norm(embeddings)
296
+ if attention_mask is not None:
297
+ embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
298
+ embeddings.dtype
299
+ )
300
+ # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
301
+ # embeddings = self.dropout(embeddings)
302
+ return embeddings
303
+
304
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
305
+ """
306
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
307
+
308
+ Args:
309
+ inputs_embeds: torch.Tensor
310
+
311
+ Returns: torch.Tensor
312
+ """
313
+ input_shape = inputs_embeds.size()[:-1]
314
+ sequence_length = input_shape[1]
315
+
316
+ position_ids = torch.arange(
317
+ self.padding_idx + 1,
318
+ sequence_length + self.padding_idx + 1,
319
+ dtype=torch.long,
320
+ device=inputs_embeds.device,
321
+ )
322
+ return position_ids.unsqueeze(0).expand(input_shape)
323
+
324
+
325
+ class EsmSelfAttention(nn.Module):
326
+ def __init__(self, config, position_embedding_type=None):
327
+ super().__init__()
328
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
329
+ config, "embedding_size"
330
+ ):
331
+ raise ValueError(
332
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
333
+ f"heads ({config.num_attention_heads})"
334
+ )
335
+
336
+ self.num_attention_heads = config.num_attention_heads
337
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
338
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
339
+
340
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
341
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
342
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
343
+
344
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
345
+ self.position_embedding_type = position_embedding_type or getattr(
346
+ config, "position_embedding_type", "absolute"
347
+ )
348
+ self.rotary_embeddings = None
349
+ if (
350
+ self.position_embedding_type == "relative_key"
351
+ or self.position_embedding_type == "relative_key_query"
352
+ ):
353
+ self.max_position_embeddings = config.max_position_embeddings
354
+ self.distance_embedding = nn.Embedding(
355
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
356
+ )
357
+ elif self.position_embedding_type == "rotary":
358
+ # Initiliaze rotary embedding config
359
+ rescaling_factor = config.rescaling_factor
360
+ rotary_embedding_config = RotaryEmbeddingConfig(rescaling_factor=rescaling_factor)
361
+
362
+ self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size, rotary_embedding_config=rotary_embedding_config)
363
+
364
+ self.is_decoder = config.is_decoder
365
+
366
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
367
+ new_x_shape = x.size()[:-1] + (
368
+ self.num_attention_heads,
369
+ self.attention_head_size,
370
+ )
371
+ x = x.view(new_x_shape)
372
+ return x.permute(0, 2, 1, 3)
373
+
374
+ def forward(
375
+ self,
376
+ hidden_states: torch.Tensor,
377
+ attention_mask: Optional[torch.FloatTensor] = None,
378
+ head_mask: Optional[torch.FloatTensor] = None,
379
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
380
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
381
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
382
+ output_attentions: Optional[bool] = False,
383
+ ) -> Tuple[torch.Tensor]:
384
+ mixed_query_layer = self.query(hidden_states)
385
+
386
+ # If this is instantiated as a cross-attention module, the keys
387
+ # and values come from an encoder; the attention mask needs to be
388
+ # such that the encoder's padding tokens are not attended to.
389
+ is_cross_attention = encoder_hidden_states is not None
390
+
391
+ if is_cross_attention and past_key_value is not None:
392
+ # reuse k,v, cross_attentions
393
+ key_layer = past_key_value[0]
394
+ value_layer = past_key_value[1]
395
+ attention_mask = encoder_attention_mask
396
+ elif is_cross_attention:
397
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
398
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
399
+ attention_mask = encoder_attention_mask
400
+ elif past_key_value is not None:
401
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
402
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
403
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
404
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
405
+ else:
406
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
407
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
408
+
409
+ query_layer = self.transpose_for_scores(mixed_query_layer)
410
+
411
+ # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
412
+ # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
413
+ # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
414
+ # ESM code and fix rotary embeddings.
415
+ query_layer = query_layer * self.attention_head_size**-0.5
416
+
417
+ if self.is_decoder:
418
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
419
+ # Further calls to cross_attention layer can then reuse all cross-attention
420
+ # key/value_states (first "if" case)
421
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
422
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
423
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
424
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
425
+ past_key_value = (key_layer, value_layer)
426
+
427
+ if self.position_embedding_type == "rotary":
428
+ query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
429
+
430
+ # Take the dot product between "query" and "key" to get the raw attention scores.
431
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
432
+
433
+ if (
434
+ self.position_embedding_type == "relative_key"
435
+ or self.position_embedding_type == "relative_key_query"
436
+ ):
437
+ seq_length = hidden_states.size()[1]
438
+ position_ids_l = torch.arange(
439
+ seq_length, dtype=torch.long, device=hidden_states.device
440
+ ).view(-1, 1)
441
+ position_ids_r = torch.arange(
442
+ seq_length, dtype=torch.long, device=hidden_states.device
443
+ ).view(1, -1)
444
+ distance = position_ids_l - position_ids_r
445
+ positional_embedding = self.distance_embedding(
446
+ distance + self.max_position_embeddings - 1
447
+ )
448
+ positional_embedding = positional_embedding.to(
449
+ dtype=query_layer.dtype
450
+ ) # fp16 compatibility
451
+
452
+ if self.position_embedding_type == "relative_key":
453
+ relative_position_scores = torch.einsum(
454
+ "bhld,lrd->bhlr", query_layer, positional_embedding
455
+ )
456
+ attention_scores = attention_scores + relative_position_scores
457
+ elif self.position_embedding_type == "relative_key_query":
458
+ relative_position_scores_query = torch.einsum(
459
+ "bhld,lrd->bhlr", query_layer, positional_embedding
460
+ )
461
+ relative_position_scores_key = torch.einsum(
462
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
463
+ )
464
+ attention_scores = (
465
+ attention_scores
466
+ + relative_position_scores_query
467
+ + relative_position_scores_key
468
+ )
469
+
470
+ if attention_mask is not None:
471
+ # Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
472
+ attention_scores = attention_scores + attention_mask
473
+
474
+ # Normalize the attention scores to probabilities.
475
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
476
+
477
+ # This is actually dropping out entire tokens to attend to, which might
478
+ # seem a bit unusual, but is taken from the original Transformer paper.
479
+ attention_probs = self.dropout(attention_probs)
480
+
481
+ # Mask heads if we want to
482
+ if head_mask is not None:
483
+ attention_probs = attention_probs * head_mask
484
+
485
+ context_layer = torch.matmul(attention_probs, value_layer)
486
+
487
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
488
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
489
+ context_layer = context_layer.view(new_context_layer_shape)
490
+
491
+ outputs = (
492
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
493
+ )
494
+
495
+ if self.is_decoder:
496
+ outputs = outputs + (past_key_value,)
497
+ return outputs
498
+
499
+
500
+ class EsmSelfOutput(nn.Module):
501
+ def __init__(self, config):
502
+ super().__init__()
503
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
504
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
505
+
506
+ def forward(self, hidden_states, input_tensor):
507
+ hidden_states = self.dense(hidden_states)
508
+ hidden_states = self.dropout(hidden_states)
509
+ hidden_states += input_tensor
510
+ return hidden_states
511
+
512
+
513
+ class EsmAttention(nn.Module):
514
+ def __init__(self, config):
515
+ super().__init__()
516
+ self.self = EsmSelfAttention(config)
517
+ self.output = EsmSelfOutput(config)
518
+ self.pruned_heads = set()
519
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
520
+
521
+ def prune_heads(self, heads):
522
+ if len(heads) == 0:
523
+ return
524
+ heads, index = find_pruneable_heads_and_indices(
525
+ heads,
526
+ self.self.num_attention_heads,
527
+ self.self.attention_head_size,
528
+ self.pruned_heads,
529
+ )
530
+
531
+ # Prune linear layers
532
+ self.self.query = prune_linear_layer(self.self.query, index)
533
+ self.self.key = prune_linear_layer(self.self.key, index)
534
+ self.self.value = prune_linear_layer(self.self.value, index)
535
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
536
+
537
+ # Update hyper params and store pruned heads
538
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
539
+ self.self.all_head_size = (
540
+ self.self.attention_head_size * self.self.num_attention_heads
541
+ )
542
+ self.pruned_heads = self.pruned_heads.union(heads)
543
+
544
+ def forward(
545
+ self,
546
+ hidden_states,
547
+ attention_mask=None,
548
+ head_mask=None,
549
+ encoder_hidden_states=None,
550
+ encoder_attention_mask=None,
551
+ past_key_value=None,
552
+ output_attentions=False,
553
+ ):
554
+ hidden_states_ln = self.LayerNorm(hidden_states)
555
+ self_outputs = self.self(
556
+ hidden_states_ln,
557
+ attention_mask,
558
+ head_mask,
559
+ encoder_hidden_states,
560
+ encoder_attention_mask,
561
+ past_key_value,
562
+ output_attentions,
563
+ )
564
+ attention_output = self.output(self_outputs[0], hidden_states)
565
+ outputs = (attention_output,) + self_outputs[
566
+ 1:
567
+ ] # add attentions if we output them
568
+ return outputs
569
+
570
+
571
+ class EsmIntermediate(nn.Module):
572
+ def __init__(self, config):
573
+ super().__init__()
574
+
575
+ self.dense = nn.Linear(
576
+ config.hidden_size,
577
+ int(config.intermediate_size * 2),
578
+ bias=config.add_bias_fnn,
579
+ )
580
+ self.activation_fn = SiLU()
581
+
582
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
583
+ hidden_states = self.dense(hidden_states)
584
+
585
+ # GLU
586
+ x1, x2 = hidden_states.split(int(hidden_states.size(-1) / 2), -1)
587
+ hidden_states = self.activation_fn(x1) * x2
588
+
589
+ return hidden_states
590
+
591
+
592
+ class EsmOutput(nn.Module):
593
+ def __init__(self, config):
594
+ super().__init__()
595
+ self.dense = nn.Linear(
596
+ config.intermediate_size, config.hidden_size, bias=config.add_bias_fnn
597
+ )
598
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
599
+
600
+ def forward(self, hidden_states, input_tensor):
601
+ hidden_states = self.dense(hidden_states)
602
+ hidden_states = self.dropout(hidden_states)
603
+ hidden_states += input_tensor
604
+ return hidden_states
605
+
606
+
607
+ class EsmLayer(nn.Module):
608
+ def __init__(self, config):
609
+ super().__init__()
610
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
611
+ self.seq_len_dim = 1
612
+ self.attention = EsmAttention(config)
613
+ self.is_decoder = config.is_decoder
614
+ self.add_cross_attention = config.add_cross_attention
615
+ if self.add_cross_attention:
616
+ if not self.is_decoder:
617
+ raise RuntimeError(
618
+ f"{self} should be used as a decoder model if cross attention is added"
619
+ )
620
+ self.crossattention = EsmAttention(config)
621
+ self.intermediate = EsmIntermediate(config)
622
+ self.output = EsmOutput(config)
623
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
624
+
625
+ def forward(
626
+ self,
627
+ hidden_states,
628
+ attention_mask=None,
629
+ head_mask=None,
630
+ encoder_hidden_states=None,
631
+ encoder_attention_mask=None,
632
+ past_key_value=None,
633
+ output_attentions=False,
634
+ ):
635
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
636
+ self_attn_past_key_value = (
637
+ past_key_value[:2] if past_key_value is not None else None
638
+ )
639
+ self_attention_outputs = self.attention(
640
+ hidden_states,
641
+ attention_mask,
642
+ head_mask,
643
+ output_attentions=output_attentions,
644
+ past_key_value=self_attn_past_key_value,
645
+ )
646
+ attention_output = self_attention_outputs[0]
647
+
648
+ # if decoder, the last output is tuple of self-attn cache
649
+ if self.is_decoder:
650
+ outputs = self_attention_outputs[1:-1]
651
+ present_key_value = self_attention_outputs[-1]
652
+ else:
653
+ outputs = self_attention_outputs[
654
+ 1:
655
+ ] # add self attentions if we output attention weights
656
+
657
+ cross_attn_present_key_value = None
658
+ if self.is_decoder and encoder_hidden_states is not None:
659
+ if not hasattr(self, "crossattention"):
660
+ raise AttributeError(
661
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
662
+ " with cross-attention layers by setting `config.add_cross_attention=True`"
663
+ )
664
+
665
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
666
+ cross_attn_past_key_value = (
667
+ past_key_value[-2:] if past_key_value is not None else None
668
+ )
669
+ cross_attention_outputs = self.crossattention(
670
+ attention_output,
671
+ attention_mask,
672
+ head_mask,
673
+ encoder_hidden_states,
674
+ encoder_attention_mask,
675
+ cross_attn_past_key_value,
676
+ output_attentions,
677
+ )
678
+ attention_output = cross_attention_outputs[0]
679
+ outputs = (
680
+ outputs + cross_attention_outputs[1:-1]
681
+ ) # add cross attentions if we output attention weights
682
+
683
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
684
+ cross_attn_present_key_value = cross_attention_outputs[-1]
685
+ present_key_value = present_key_value + cross_attn_present_key_value
686
+
687
+ layer_output = self.feed_forward_chunk(attention_output)
688
+
689
+ outputs = (layer_output,) + outputs
690
+
691
+ # if decoder, return the attn key/values as the last output
692
+ if self.is_decoder:
693
+ outputs = outputs + (present_key_value,)
694
+ return outputs
695
+
696
+ def feed_forward_chunk(self, attention_output):
697
+ attention_output_ln = self.LayerNorm(attention_output)
698
+ intermediate_output = self.intermediate(attention_output_ln)
699
+ layer_output = self.output(intermediate_output, attention_output)
700
+ return layer_output
701
+
702
+
703
+ class EsmEncoder(nn.Module):
704
+ def __init__(self, config):
705
+ super().__init__()
706
+ self.config = config
707
+ self.layer = nn.ModuleList(
708
+ [EsmLayer(config) for _ in range(config.num_hidden_layers)]
709
+ )
710
+ self.emb_layer_norm_after = nn.LayerNorm(
711
+ config.hidden_size, eps=config.layer_norm_eps
712
+ )
713
+ self.gradient_checkpointing = False
714
+
715
+ def forward(
716
+ self,
717
+ hidden_states,
718
+ attention_mask=None,
719
+ head_mask=None,
720
+ encoder_hidden_states=None,
721
+ encoder_attention_mask=None,
722
+ past_key_values=None,
723
+ use_cache=None,
724
+ output_attentions=False,
725
+ output_hidden_states=False,
726
+ return_dict=True,
727
+ ):
728
+ if self.gradient_checkpointing and self.training:
729
+ if use_cache:
730
+ logger.warning_once(
731
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
732
+ "`use_cache=False`..."
733
+ )
734
+ use_cache = False
735
+ all_hidden_states = () if output_hidden_states else None
736
+ all_self_attentions = () if output_attentions else None
737
+ all_cross_attentions = (
738
+ () if output_attentions and self.config.add_cross_attention else None
739
+ )
740
+
741
+ next_decoder_cache = () if use_cache else None
742
+ for i, layer_module in enumerate(self.layer):
743
+ if output_hidden_states:
744
+ all_hidden_states = all_hidden_states + (hidden_states,)
745
+
746
+ layer_head_mask = head_mask[i] if head_mask is not None else None
747
+ past_key_value = past_key_values[i] if past_key_values is not None else None
748
+
749
+ if self.gradient_checkpointing and self.training:
750
+
751
+ def create_custom_forward(module):
752
+ def custom_forward(*inputs):
753
+ return module(*inputs, past_key_value, output_attentions)
754
+
755
+ return custom_forward
756
+
757
+ layer_outputs = torch.utils.checkpoint.checkpoint(
758
+ create_custom_forward(layer_module),
759
+ hidden_states,
760
+ attention_mask,
761
+ layer_head_mask,
762
+ encoder_hidden_states,
763
+ encoder_attention_mask,
764
+ )
765
+ else:
766
+ layer_outputs = layer_module(
767
+ hidden_states,
768
+ attention_mask,
769
+ layer_head_mask,
770
+ encoder_hidden_states,
771
+ encoder_attention_mask,
772
+ past_key_value,
773
+ output_attentions,
774
+ )
775
+
776
+ hidden_states = layer_outputs[0]
777
+ if use_cache:
778
+ next_decoder_cache += (layer_outputs[-1],)
779
+ if output_attentions:
780
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
781
+ if self.config.add_cross_attention:
782
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
783
+
784
+
785
+ if self.emb_layer_norm_after:
786
+ hidden_states = self.emb_layer_norm_after(hidden_states)
787
+
788
+ if output_hidden_states:
789
+ all_hidden_states = all_hidden_states + (hidden_states,)
790
+
791
+ if not return_dict:
792
+ return tuple(
793
+ v
794
+ for v in [
795
+ hidden_states,
796
+ next_decoder_cache,
797
+ all_hidden_states,
798
+ all_self_attentions,
799
+ all_cross_attentions,
800
+ ]
801
+ if v is not None
802
+ )
803
+ return BaseModelOutputWithPastAndCrossAttentions(
804
+ last_hidden_state=hidden_states,
805
+ past_key_values=next_decoder_cache,
806
+ hidden_states=all_hidden_states,
807
+ attentions=all_self_attentions,
808
+ cross_attentions=all_cross_attentions,
809
+ )
810
+
811
+
812
+ # Copied from transformers.models.bert.modeling_bert.BertPooler
813
+ class EsmPooler(nn.Module):
814
+ def __init__(self, config):
815
+ super().__init__()
816
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
817
+ self.activation = nn.Tanh()
818
+
819
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
820
+ # We "pool" the model by simply taking the hidden state corresponding
821
+ # to the first token.
822
+ first_token_tensor = hidden_states[:, 0]
823
+ pooled_output = self.dense(first_token_tensor)
824
+ pooled_output = self.activation(pooled_output)
825
+ return pooled_output
826
+
827
+
828
+ class EsmPreTrainedModel(PreTrainedModel):
829
+ """
830
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
831
+ models.
832
+ """
833
+
834
+ config_class = SegmentNTConfig
835
+ base_model_prefix = "esm"
836
+ _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"]
837
+
838
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
839
+ def _init_weights(self, module):
840
+ """Initialize the weights"""
841
+ if isinstance(module, nn.Linear):
842
+ # Slightly different from the TF version which uses truncated_normal for initialization
843
+ # cf https://github.com/pytorch/pytorch/pull/5617
844
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
845
+ if module.bias is not None:
846
+ module.bias.data.zero_()
847
+ elif isinstance(module, nn.Embedding):
848
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
849
+ if module.padding_idx is not None:
850
+ module.weight.data[module.padding_idx].zero_()
851
+ elif isinstance(module, nn.LayerNorm):
852
+ module.bias.data.zero_()
853
+ module.weight.data.fill_(1.0)
854
+
855
+
856
+ ESM_START_DOCSTRING = r"""
857
+
858
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
859
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
860
+ etc.)
861
+
862
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
863
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
864
+ and behavior.
865
+
866
+ Parameters:
867
+ config ([`EsmConfig`]): Model configuration class with all the parameters of the
868
+ model. Initializing with a config file does not load the weights associated with the model, only the
869
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
870
+ """
871
+
872
+ ESM_INPUTS_DOCSTRING = r"""
873
+ Args:
874
+ input_ids (`torch.LongTensor` of shape `({0})`):
875
+ Indices of input sequence tokens in the vocabulary.
876
+
877
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
878
+ [`PreTrainedTokenizer.__call__`] for details.
879
+
880
+ [What are input IDs?](../glossary#input-ids)
881
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
882
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
883
+
884
+ - 1 for tokens that are **not masked**,
885
+ - 0 for tokens that are **masked**.
886
+
887
+ [What are attention masks?](../glossary#attention-mask)
888
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
889
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
890
+ config.max_position_embeddings - 1]`.
891
+
892
+ [What are position IDs?](../glossary#position-ids)
893
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
894
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
895
+
896
+ - 1 indicates the head is **not masked**,
897
+ - 0 indicates the head is **masked**.
898
+
899
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
900
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
901
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
902
+ model's internal embedding lookup matrix.
903
+ output_attentions (`bool`, *optional*):
904
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
905
+ tensors for more detail.
906
+ output_hidden_states (`bool`, *optional*):
907
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
908
+ more detail.
909
+ return_dict (`bool`, *optional*):
910
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
911
+ """
912
+
913
+
914
+ @add_start_docstrings(
915
+ "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
916
+ ESM_START_DOCSTRING,
917
+ )
918
+ class EsmModel(EsmPreTrainedModel):
919
+ """
920
+
921
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
922
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
923
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
924
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
925
+
926
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
927
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
928
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
929
+ """
930
+
931
+ supports_gradient_checkpointing = False
932
+
933
+ def __init__(self, config, add_pooling_layer=True):
934
+ super().__init__(config)
935
+ self.config = config
936
+
937
+ self.embeddings = EsmEmbeddings(config)
938
+ self.encoder = EsmEncoder(config)
939
+
940
+ self.pooler = EsmPooler(config) if add_pooling_layer else None
941
+
942
+ self.contact_head = EsmContactPredictionHead(
943
+ in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
944
+ )
945
+
946
+ # Initialize weights and apply final processing
947
+ self.post_init()
948
+
949
+ def _set_gradient_checkpointing(self, module, value=False):
950
+ if isinstance(module, EsmEncoder):
951
+ module.gradient_checkpointing = value
952
+
953
+ def get_input_embeddings(self):
954
+ return self.embeddings.word_embeddings
955
+
956
+ def set_input_embeddings(self, value):
957
+ self.embeddings.word_embeddings = value
958
+
959
+ def _prune_heads(self, heads_to_prune):
960
+ """
961
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
962
+ class PreTrainedModel
963
+ """
964
+ for layer, heads in heads_to_prune.items():
965
+ self.encoder.layer[layer].attention.prune_heads(heads)
966
+
967
+ @add_start_docstrings_to_model_forward(
968
+ ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
969
+ )
970
+ @add_code_sample_docstrings(
971
+ checkpoint=_CHECKPOINT_FOR_DOC,
972
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
973
+ config_class=_CONFIG_FOR_DOC,
974
+ )
975
+ def forward(
976
+ self,
977
+ input_ids: Optional[torch.Tensor] = None,
978
+ attention_mask: Optional[torch.Tensor] = None,
979
+ position_ids: Optional[torch.Tensor] = None,
980
+ head_mask: Optional[torch.Tensor] = None,
981
+ inputs_embeds: Optional[torch.Tensor] = None,
982
+ encoder_hidden_states: Optional[torch.Tensor] = None,
983
+ encoder_attention_mask: Optional[torch.Tensor] = None,
984
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
985
+ use_cache: Optional[bool] = None,
986
+ output_attentions: Optional[bool] = None,
987
+ output_hidden_states: Optional[bool] = None,
988
+ return_dict: Optional[bool] = None,
989
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
990
+ r"""
991
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
992
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
993
+ the model is configured as a decoder.
994
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
995
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
996
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
997
+
998
+ - 1 for tokens that are **not masked**,
999
+ - 0 for tokens that are **masked**.
1000
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1001
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1002
+
1003
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1004
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1005
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1006
+ use_cache (`bool`, *optional*):
1007
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1008
+ `past_key_values`).
1009
+ """
1010
+ output_attentions = (
1011
+ output_attentions
1012
+ if output_attentions is not None
1013
+ else self.config.output_attentions
1014
+ )
1015
+ output_hidden_states = (
1016
+ output_hidden_states
1017
+ if output_hidden_states is not None
1018
+ else self.config.output_hidden_states
1019
+ )
1020
+ return_dict = (
1021
+ return_dict if return_dict is not None else self.config.use_return_dict
1022
+ )
1023
+
1024
+ if self.config.is_decoder:
1025
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1026
+ else:
1027
+ use_cache = False
1028
+
1029
+ if input_ids is not None and inputs_embeds is not None:
1030
+ raise ValueError(
1031
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1032
+ )
1033
+ elif input_ids is not None:
1034
+ input_shape = input_ids.size()
1035
+ elif inputs_embeds is not None:
1036
+ input_shape = inputs_embeds.size()[:-1]
1037
+ else:
1038
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1039
+
1040
+ batch_size, seq_length = input_shape
1041
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1042
+
1043
+ # past_key_values_length
1044
+ past_key_values_length = (
1045
+ past_key_values[0][0].shape[2] if past_key_values is not None else 0
1046
+ )
1047
+
1048
+ if attention_mask is None:
1049
+ attention_mask = torch.ones(
1050
+ ((batch_size, seq_length + past_key_values_length)), device=device
1051
+ )
1052
+
1053
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1054
+ # ourselves in which case we just need to make it broadcastable to all heads.
1055
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
1056
+ attention_mask, input_shape
1057
+ )
1058
+
1059
+ # If a 2D or 3D attention mask is provided for the cross-attention
1060
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1061
+ if self.config.is_decoder and encoder_hidden_states is not None:
1062
+ (
1063
+ encoder_batch_size,
1064
+ encoder_sequence_length,
1065
+ _,
1066
+ ) = encoder_hidden_states.size()
1067
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1068
+ if encoder_attention_mask is None:
1069
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1070
+ encoder_extended_attention_mask = self.invert_attention_mask(
1071
+ encoder_attention_mask
1072
+ )
1073
+ else:
1074
+ encoder_extended_attention_mask = None
1075
+
1076
+ # Prepare head mask if needed
1077
+ # 1.0 in head_mask indicate we keep the head
1078
+ # attention_probs has shape bsz x n_heads x N x N
1079
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1080
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1081
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1082
+
1083
+ embedding_output = self.embeddings(
1084
+ input_ids=input_ids,
1085
+ position_ids=position_ids,
1086
+ attention_mask=attention_mask,
1087
+ inputs_embeds=inputs_embeds,
1088
+ past_key_values_length=past_key_values_length,
1089
+ )
1090
+ encoder_outputs = self.encoder(
1091
+ embedding_output,
1092
+ attention_mask=extended_attention_mask,
1093
+ head_mask=head_mask,
1094
+ encoder_hidden_states=encoder_hidden_states,
1095
+ encoder_attention_mask=encoder_extended_attention_mask,
1096
+ past_key_values=past_key_values,
1097
+ use_cache=use_cache,
1098
+ output_attentions=output_attentions,
1099
+ output_hidden_states=output_hidden_states,
1100
+ return_dict=return_dict,
1101
+ )
1102
+ sequence_output = encoder_outputs[0]
1103
+ pooled_output = (
1104
+ self.pooler(sequence_output) if self.pooler is not None else None
1105
+ )
1106
+
1107
+ if not return_dict:
1108
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1109
+
1110
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1111
+ last_hidden_state=sequence_output,
1112
+ pooler_output=pooled_output,
1113
+ past_key_values=encoder_outputs.past_key_values,
1114
+ hidden_states=encoder_outputs.hidden_states,
1115
+ attentions=encoder_outputs.attentions,
1116
+ cross_attentions=encoder_outputs.cross_attentions,
1117
+ )
1118
+
1119
+ def predict_contacts(self, tokens, attention_mask):
1120
+ attns = self(
1121
+ tokens,
1122
+ attention_mask=attention_mask,
1123
+ return_dict=True,
1124
+ output_attentions=True,
1125
+ ).attentions
1126
+ attns = torch.stack(attns, dim=1) # Matches the original model layout
1127
+ # In the original model, attentions for padding tokens are completely zeroed out.
1128
+ # This makes no difference most of the time because the other tokens won't attend to them,
1129
+ # but it does for the contact prediction task, which takes attentions as input,
1130
+ # so we have to mimic that here.
1131
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
1132
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
1133
+ return self.contact_head(tokens, attns)
1134
+
1135
+ def create_position_ids_from_input_ids(
1136
+ input_ids, padding_idx, past_key_values_length=0
1137
+ ):
1138
+ """
1139
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1140
+ are ignored. This is modified from fairseq's `utils.make_positions`.
1141
+
1142
+ Args:
1143
+ x: torch.Tensor x:
1144
+
1145
+ Returns: torch.Tensor
1146
+ """
1147
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1148
+ mask = input_ids.ne(padding_idx).int()
1149
+ incremental_indices = (
1150
+ torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
1151
+ ) * mask
1152
+ return incremental_indices.long() + padding_idx
1153
+
1154
+
1155
+
1156
+
1157
+ class SegmentNT(EsmPreTrainedModel):
1158
+ def __init__(self, config):
1159
+ super().__init__(config)
1160
+ self.num_labels = config.num_labels
1161
+ self.config = config
1162
+
1163
+ self.esm = EsmModel(config, add_pooling_layer=False)
1164
+
1165
+ embed_dim = config.hidden_size
1166
+ num_layers = config.num_layers_head
1167
+ self.unet = UNET1DSegmentationHead(
1168
+ embed_dim=embed_dim,
1169
+ num_classes=embed_dim // 2,
1170
+ output_channels_list=tuple(
1171
+ embed_dim * (2**i) for i in range(num_layers)
1172
+ ),
1173
+ )
1174
+ self.fc = nn.Linear(in_features=embed_dim, out_features=6 * 2 * config.num_features)
1175
+ self.activation_fn = nn.SiLU()
1176
+
1177
+ self.init_weights()
1178
+
1179
+ # @add_start_docstrings_to_model_forward(
1180
+ # ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1181
+ # )
1182
+ # @add_code_sample_docstrings(
1183
+ # checkpoint=_CHECKPOINT_FOR_DOC,
1184
+ # output_type=SequenceClassifierOutput,
1185
+ # config_class=_CONFIG_FOR_DOC,
1186
+ # )
1187
+ def forward(
1188
+ self,
1189
+ input_ids: Optional[torch.LongTensor] = None,
1190
+ attention_mask: Optional[torch.Tensor] = None,
1191
+ position_ids: Optional[torch.LongTensor] = None,
1192
+ head_mask: Optional[torch.Tensor] = None,
1193
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1194
+ labels: Optional[torch.LongTensor] = None,
1195
+ output_attentions: Optional[bool] = None,
1196
+ output_hidden_states: Optional[bool] = None,
1197
+ return_dict: Optional[bool] = None,
1198
+ ) -> Union[Tuple, SequenceClassifierOutput]:
1199
+ r"""
1200
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1201
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1202
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1203
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1204
+ """
1205
+ return_dict = (
1206
+ return_dict if return_dict is not None else self.config.use_return_dict
1207
+ )
1208
+
1209
+ outputs = self.esm(
1210
+ input_ids,
1211
+ attention_mask=attention_mask,
1212
+ position_ids=position_ids,
1213
+ head_mask=head_mask,
1214
+ inputs_embeds=inputs_embeds,
1215
+ output_attentions=output_attentions,
1216
+ output_hidden_states=output_hidden_states,
1217
+ return_dict=return_dict,
1218
+ )
1219
+ sequence_output = outputs[0]
1220
+ # Remove CLS token
1221
+ sequence_output = sequence_output[:,1:,:]
1222
+
1223
+
1224
+ # Invert the channels and sequence length channel
1225
+ sequence_output = torch.transpose(sequence_output, 2,1)
1226
+
1227
+ x = self.activation_fn(self.unet(sequence_output))
1228
+
1229
+ # Invert the channels and sequence length channel
1230
+ x = torch.transpose(x, 2,1)
1231
+
1232
+ logits = self.fc(x)
1233
+
1234
+ # Final reshape to have logits per nucleotides, per feature
1235
+ logits = torch.reshape(logits, (x.shape[0], x.shape[1] * 6, self.config.num_features, 2))
1236
+
1237
+ # Add logits to the ESM outputs
1238
+ outputs["logits"] = logits
1239
+
1240
+ return outputs
1241
+
1242
+
1243
+ class DownSample1D(nn.Module):
1244
+ """
1245
+ 1D-UNET downsampling block.
1246
+ """
1247
+
1248
+ def __init__(
1249
+ self,
1250
+ input_channels: int,
1251
+ output_channels: int,
1252
+ num_layers: int = 2,
1253
+ ):
1254
+ """
1255
+ Args:
1256
+ output_channels: number of output channels.
1257
+ activation_fn: name of the activation function to use.
1258
+ Should be one of "gelu",
1259
+ "gelu-no-approx", "relu", "swish", "silu", "sin".
1260
+ num_layers: number of convolution layers.
1261
+ name: module name.
1262
+ """
1263
+
1264
+ super().__init__()
1265
+ self.first_layer = [nn.Conv1d(
1266
+ in_channels=input_channels,
1267
+ out_channels=output_channels,
1268
+ kernel_size=3,
1269
+ stride=1,
1270
+ dilation=1,
1271
+ padding="same",
1272
+ )]
1273
+
1274
+
1275
+ self.next_layers = [
1276
+ nn.Conv1d(
1277
+ in_channels=output_channels,
1278
+ out_channels=output_channels,
1279
+ kernel_size=3,
1280
+ stride=1,
1281
+ dilation=1,
1282
+ padding="same",
1283
+ )
1284
+ for _ in range(num_layers-1)
1285
+ ]
1286
+ self.conv_layers = nn.ModuleList(self.first_layer + self.next_layers)
1287
+
1288
+ self.avg_pool = nn.AvgPool1d(
1289
+ kernel_size=2,
1290
+ stride=2,
1291
+ padding=0,
1292
+ )
1293
+ self.activation_fn = nn.SiLU()
1294
+
1295
+
1296
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
1297
+ for i, conv_layer in enumerate(self.conv_layers):
1298
+ x = self.activation_fn(conv_layer(x))
1299
+
1300
+ hidden = x
1301
+ x = self.avg_pool(hidden)
1302
+ return x, hidden
1303
+
1304
+
1305
+
1306
+ class UpSample1D(nn.Module):
1307
+ """
1308
+ 1D-UNET upsampling block.
1309
+ """
1310
+
1311
+ def __init__(
1312
+ self,
1313
+ input_channels: int,
1314
+ output_channels: int,
1315
+ num_layers: int = 2,
1316
+ ):
1317
+ """
1318
+ Args:
1319
+ output_channels: number of output channels.
1320
+ activation_fn: name of the activation function to use.
1321
+ Should be one of "gelu",
1322
+ "gelu-no-approx", "relu", "swish", "silu", "sin".
1323
+ interpolation_method: Method to be used for upsampling interpolation.
1324
+ Should be one of "nearest", "linear", "cubic", "lanczos3", "lanczos5".
1325
+ num_layers: number of convolution layers.
1326
+ name: module name.
1327
+ """
1328
+ super().__init__()
1329
+
1330
+ self._first_layer = [nn.ConvTranspose1d(
1331
+ in_channels=input_channels,
1332
+ out_channels=output_channels,
1333
+ kernel_size=3,
1334
+ stride=1,
1335
+ padding=1,
1336
+ )]
1337
+
1338
+
1339
+ self._next_layers = [
1340
+ nn.ConvTranspose1d(
1341
+ in_channels=output_channels,
1342
+ out_channels=output_channels,
1343
+ kernel_size=3,
1344
+ stride=1,
1345
+ padding=1,
1346
+ )
1347
+ for _ in range(num_layers-1)
1348
+ ]
1349
+
1350
+ self.conv_layers = nn.ModuleList(self._first_layer + self._next_layers)
1351
+
1352
+ self._activation_fn = nn.SiLU()
1353
+
1354
+
1355
+
1356
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
1357
+ for i, conv_layer in enumerate(self.conv_layers):
1358
+ x = self._activation_fn(conv_layer(x))
1359
+
1360
+ # Different order than in Haiku because the channels are changed when going
1361
+ # from Haiku to Torch.
1362
+ x = nn.functional.interpolate(x, size=2 * x.shape[2], mode="nearest")
1363
+
1364
+
1365
+ return x
1366
+
1367
+
1368
+
1369
+ class FinalConv1D(nn.Module):
1370
+ """
1371
+ Final output block of the 1D-UNET.
1372
+ """
1373
+
1374
+ def __init__(
1375
+ self,
1376
+ input_channels: int,
1377
+ output_channels: int,
1378
+ num_layers: int = 2,
1379
+ ):
1380
+ """
1381
+ Args:
1382
+ output_channels: number of output channels.
1383
+ activation_fn: name of the activation function to use.
1384
+ Should be one of "gelu",
1385
+ "gelu-no-approx", "relu", "swish", "silu", "sin".
1386
+ num_layers: number of convolution layers.
1387
+ name: module name.
1388
+ """
1389
+ super().__init__()
1390
+
1391
+ self._first_layer = [nn.Conv1d(
1392
+ in_channels=input_channels,
1393
+ out_channels=output_channels,
1394
+ kernel_size=3,
1395
+ stride=1,
1396
+ dilation=1,
1397
+ padding="same",
1398
+ )]
1399
+
1400
+ self._next_layers = [
1401
+ nn.Conv1d(
1402
+ in_channels=output_channels,
1403
+ out_channels=output_channels,
1404
+ kernel_size=3,
1405
+ stride=1,
1406
+ dilation=1,
1407
+ padding="same",
1408
+ )
1409
+ for _ in range(num_layers-1)
1410
+ ]
1411
+ self.conv_layers = nn.ModuleList(self._first_layer + self._next_layers)
1412
+
1413
+ self._activation_fn = nn.SiLU()
1414
+
1415
+
1416
+
1417
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1418
+ for i, conv_layer in enumerate(self.conv_layers):
1419
+ x = conv_layer(x)
1420
+ if i < len(self.conv_layers) - 1:
1421
+ x = self._activation_fn(x)
1422
+ return x
1423
+
1424
+
1425
+ class UNET1DSegmentationHead(nn.Module):
1426
+ """
1427
+ 1D-UNET based head to be plugged on top of a pretrained model to perform
1428
+ semantic segmentation.
1429
+ """
1430
+
1431
+ def __init__(
1432
+ self,
1433
+ embed_dim: int,
1434
+ num_classes: int,
1435
+ output_channels_list: Tuple[int, ...] = (64, 128, 256),
1436
+ num_conv_layers_per_block: int = 2,
1437
+ ):
1438
+ """
1439
+ Args:
1440
+ num_classes: number of classes to segment
1441
+ output_channels_list: list of the number of output channel at each level of
1442
+ the UNET
1443
+ num_conv_layers_per_block: number of convolution layers per block.
1444
+ """
1445
+ super().__init__()
1446
+ self._num_pooling_layers = len(output_channels_list)
1447
+
1448
+
1449
+ downsample_input_channels_list = (embed_dim, ) + output_channels_list[:-1]
1450
+
1451
+ output_channels_list_reversed = tuple(reversed(output_channels_list))
1452
+ upsample_input_channels_list = (output_channels_list[-1],) + output_channels_list_reversed
1453
+ upsample_output_channels_list = output_channels_list_reversed
1454
+
1455
+ self._downsample_blocks = nn.ModuleList([
1456
+ DownSample1D(
1457
+ input_channels= input_channels,
1458
+ output_channels=output_channels,
1459
+ num_layers=num_conv_layers_per_block,
1460
+ )
1461
+ for input_channels, output_channels in zip(downsample_input_channels_list, output_channels_list)
1462
+ ])
1463
+
1464
+ self._upsample_blocks = nn.ModuleList([
1465
+ UpSample1D(
1466
+ input_channels = input_channels,
1467
+ output_channels=output_channels,
1468
+ num_layers=num_conv_layers_per_block,
1469
+ )
1470
+ for input_channels, output_channels in zip(upsample_input_channels_list, upsample_output_channels_list)
1471
+ ])
1472
+
1473
+ self.final_block = FinalConv1D(
1474
+ input_channels=output_channels_list[0],
1475
+ output_channels=num_classes * 2,
1476
+ num_layers=num_conv_layers_per_block,
1477
+ )
1478
+
1479
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1480
+
1481
+ if x.shape[2] % 2**self._num_pooling_layers:
1482
+ raise ValueError(
1483
+ "Input length must be divisible by the 2 to the power of"
1484
+ " number of poolign layers."
1485
+ )
1486
+
1487
+ hiddens = []
1488
+ for downsample_block in self._downsample_blocks:
1489
+ x, hidden = downsample_block(x)
1490
+ hiddens.append(hidden)
1491
+
1492
+
1493
+
1494
+ for i, (upsample_block, hidden) in enumerate(zip(self._upsample_blocks, reversed(hiddens))):
1495
+ x = upsample_block(x) + hidden
1496
+ x = self.final_block(x)
1497
+ return x
1498
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43cbcdd5cb81d82d39afc50183c2c137a50412c7d4b014b53a960629d6729842
3
+ size 2237478985
segment_nt_config.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ ESM model configuration"""
16
+
17
+ from dataclasses import asdict, dataclass
18
+ from typing import Optional
19
+
20
+ from transformers import PretrainedConfig, logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ # TODO Update this
25
+ ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
27
+ # See all ESM models at https://huggingface.co/models?filter=esm
28
+ }
29
+
30
+
31
+ class SegmentNTConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
34
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the ESM
36
+ [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*):
44
+ Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`ESMModel`].
46
+ mask_token_id (`int`, *optional*):
47
+ The index of the mask token in the vocabulary. This must be included in the config because of the
48
+ "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
49
+ pad_token_id (`int`, *optional*):
50
+ The index of the padding token in the vocabulary. This must be included in the config because certain parts
51
+ of the ESM code use this instead of the attention mask.
52
+ hidden_size (`int`, *optional*, defaults to 768):
53
+ Dimensionality of the encoder layers and the pooler layer.
54
+ num_hidden_layers (`int`, *optional*, defaults to 12):
55
+ Number of hidden layers in the Transformer encoder.
56
+ num_attention_heads (`int`, *optional*, defaults to 12):
57
+ Number of attention heads for each attention layer in the Transformer encoder.
58
+ intermediate_size (`int`, *optional*, defaults to 3072):
59
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
60
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
61
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
62
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
63
+ The dropout ratio for the attention probabilities.
64
+ max_position_embeddings (`int`, *optional*, defaults to 1026):
65
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
66
+ just in case (e.g., 512 or 1024 or 2048).
67
+ initializer_range (`float`, *optional*, defaults to 0.02):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
70
+ The epsilon used by the layer normalization layers.
71
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
72
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
73
+ For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
74
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
75
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
76
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
77
+ is_decoder (`bool`, *optional*, defaults to `False`):
78
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
79
+ use_cache (`bool`, *optional*, defaults to `True`):
80
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
81
+ relevant if `config.is_decoder=True`.
82
+ emb_layer_norm_before (`bool`, *optional*):
83
+ Whether to apply layer normalization after embeddings but before the main stem of the network.
84
+ token_dropout (`bool`, defaults to `False`):
85
+ When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
86
+
87
+ Examples:
88
+
89
+ ```python
90
+ >>> from transformers import EsmModel, EsmConfig
91
+
92
+ >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
93
+
94
+ >>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
95
+
96
+ >>> # Accessing the model configuration >>> configuration = model.config
97
+ ```"""
98
+ model_type = "esm"
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_size=None,
103
+ mask_token_id=None,
104
+ pad_token_id=None,
105
+ hidden_size=768,
106
+ num_hidden_layers=12,
107
+ num_attention_heads=12,
108
+ intermediate_size=3072,
109
+ hidden_dropout_prob=0.1,
110
+ attention_probs_dropout_prob=0.1,
111
+ max_position_embeddings=1026,
112
+ initializer_range=0.02,
113
+ layer_norm_eps=1e-12,
114
+ position_embedding_type="absolute",
115
+ use_cache=True,
116
+ emb_layer_norm_before=None,
117
+ token_dropout=False,
118
+ is_folding_model=False,
119
+ esmfold_config=None,
120
+ vocab_list=None,
121
+ add_bias_fnn=True,
122
+ rescaling_factor=None,
123
+ num_layers_head=2,
124
+ num_features=14,
125
+ **kwargs,
126
+ ):
127
+ super().__init__(
128
+ pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs
129
+ )
130
+
131
+ self.vocab_size = vocab_size
132
+ self.hidden_size = hidden_size
133
+ self.num_hidden_layers = num_hidden_layers
134
+ self.num_attention_heads = num_attention_heads
135
+ self.intermediate_size = intermediate_size
136
+ self.hidden_dropout_prob = hidden_dropout_prob
137
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
138
+ self.max_position_embeddings = max_position_embeddings
139
+ self.initializer_range = initializer_range
140
+ self.layer_norm_eps = layer_norm_eps
141
+ self.position_embedding_type = position_embedding_type
142
+ self.use_cache = use_cache
143
+ self.emb_layer_norm_before = emb_layer_norm_before
144
+ self.token_dropout = token_dropout
145
+ self.is_folding_model = is_folding_model
146
+ # Arguments needed for dcnuc v2
147
+ self.add_bias_fnn = add_bias_fnn
148
+ # Arguments needed for Segment NT
149
+ self.num_layers_head = num_layers_head
150
+ self.num_features = num_features
151
+ self.rescaling_factor = rescaling_factor
152
+ if is_folding_model:
153
+ if esmfold_config is None:
154
+ logger.info(
155
+ "No esmfold_config supplied for folding model, using default values."
156
+ )
157
+ esmfold_config = EsmFoldConfig()
158
+ elif isinstance(esmfold_config, dict):
159
+ esmfold_config = EsmFoldConfig(**esmfold_config)
160
+ self.esmfold_config = esmfold_config
161
+ if vocab_list is None:
162
+ logger.warning(
163
+ "No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!"
164
+ )
165
+ self.vocab_list = get_default_vocab_list()
166
+ else:
167
+ self.vocab_list = vocab_list
168
+ else:
169
+ self.esmfold_config = None
170
+ self.vocab_list = None
171
+ if self.esmfold_config is not None and getattr(
172
+ self.esmfold_config, "use_esm_attn_map", False
173
+ ):
174
+ raise ValueError(
175
+ "The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!"
176
+ )
177
+
178
+ def to_dict(self):
179
+ """
180
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
181
+
182
+ Returns:
183
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
184
+ """
185
+ output = super().to_dict()
186
+ if isinstance(self.esmfold_config, EsmFoldConfig):
187
+ output["esmfold_config"] = self.esmfold_config.to_dict()
188
+ return output
189
+
190
+
191
+ @dataclass
192
+ class EsmFoldConfig:
193
+ esm_type: str = None
194
+ fp16_esm: bool = True
195
+ use_esm_attn_map: bool = False
196
+ esm_ablate_pairwise: bool = False
197
+ esm_ablate_sequence: bool = False
198
+ esm_input_dropout: float = 0
199
+
200
+ embed_aa: bool = True
201
+ bypass_lm: bool = False
202
+
203
+ lddt_head_hid_dim: int = 128
204
+ trunk: "TrunkConfig" = None
205
+
206
+ def __post_init__(self):
207
+ if self.trunk is None:
208
+ self.trunk = TrunkConfig()
209
+ elif isinstance(self.trunk, dict):
210
+ self.trunk = TrunkConfig(**self.trunk)
211
+
212
+ def to_dict(self):
213
+ """
214
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
215
+
216
+ Returns:
217
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
218
+ """
219
+ output = asdict(self)
220
+ output["trunk"] = self.trunk.to_dict()
221
+ return output
222
+
223
+
224
+
225
+
226
+ def get_default_vocab_list():
227
+ return (
228
+ "<cls>",
229
+ "<pad>",
230
+ "<eos>",
231
+ "<unk>",
232
+ "L",
233
+ "A",
234
+ "G",
235
+ "V",
236
+ "S",
237
+ "E",
238
+ "R",
239
+ "T",
240
+ "I",
241
+ "D",
242
+ "P",
243
+ "K",
244
+ "Q",
245
+ "N",
246
+ "F",
247
+ "Y",
248
+ "M",
249
+ "H",
250
+ "W",
251
+ "C",
252
+ "X",
253
+ "B",
254
+ "U",
255
+ "Z",
256
+ "O",
257
+ ".",
258
+ "-",
259
+ "<null_1>",
260
+ "<mask>",
261
+ )