import torch from torch import nn from typing import Optional, Tuple, Union import transformers from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half import math try: from xformers import ops as xops except ImportError: xops = None print( "Xformers is not installed correctly. If you want to use memory_efficient_attention use the following command to install Xformers\npip install xformers." ) STORE_KV_BEFORE_ROPE = False USE_MEM_EFF_ATTENTION = False ALPHA = 1.0 AUTO_COEFF = 1.0 SCALING_FACTOR = None def apply_rotary_pos_emb_single(q, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) return q_embed def xformers_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if STORE_KV_BEFORE_ROPE is False: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None else: if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids) position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=cos.device) position_ids = position_ids.unsqueeze(0).view(-1, kv_seq_len) key_states = apply_rotary_pos_emb_single(key_states, cos, sin, position_ids) if xops is not None and USE_MEM_EFF_ATTENTION: attn_weights = None query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_bias = None if (query_states.size(1)==1 and key_states.size(1)>1) else xops.LowerTriangularMask() attn_output = xops.memory_efficient_attention( query_states, key_states, value_states, attn_bias=attn_bias, p=0) else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) t = t / self.scaling_factor freqs = torch.einsum("i,j->ij", t, self.ntk_inv_freq.to(device)) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=None): self.alpha = ALPHA if SCALING_FACTOR is None: self.scaling_factor = scaling_factor or 1.0 else: self.scaling_factor = SCALING_FACTOR if isinstance(ALPHA,(float,int)): base = base * ALPHA ** (dim / (dim-2)) self.base = base elif ALPHA=='auto': self.base = base else: raise ValueError(ALPHA) old_init(self, dim, max_position_embeddings, base, device) self.ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) self._set_cos_sin_cache = _set_cos_sin_cache self._set_cos_sin_cache( self, seq_len=max_position_embeddings, device=self.ntk_inv_freq.device, dtype=torch.get_default_dtype() ) def adaptive_ntk_forward(self, x, seq_len=None): if seq_len > self.max_seq_len_cached: if isinstance(self.alpha,(float,int)): self._set_cos_sin_cache(self, seq_len=seq_len, device=x.device, dtype=x.dtype) elif self.alpha=='auto': t = torch.arange(seq_len, device=x.device, dtype=torch.float32) t = t / self.scaling_factor dim = self.dim alpha = (seq_len / (self.max_position_embeddings/2) - 1) * AUTO_COEFF base = self.base * alpha ** (dim / (dim-2)) ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim )) freqs = torch.einsum("i,j->ij", t, ntk_inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) cos_cached = emb.cos()[None, None, :, :] sin_cached = emb.sin()[None, None, :, :] return ( cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype) ) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype) ) def apply_attention_patch( use_memory_efficient_attention=False, store_kv_before_rope=False ): global USE_MEM_EFF_ATTENTION, STORE_KV_BEFORE_ROPE if use_memory_efficient_attention is True and xops is not None: USE_MEM_EFF_ATTENTION = use_memory_efficient_attention print("USE_MEM_EFF_ATTENTION: ",USE_MEM_EFF_ATTENTION) STORE_KV_BEFORE_ROPE = store_kv_before_rope print("STORE_KV_BEFORE_ROPE:", STORE_KV_BEFORE_ROPE) transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward def apply_ntk_scaling_patch(alpha: Union[float,str], scaling_factor: Optional[float] = None): global ALPHA global SCALING_FACTOR ALPHA = alpha SCALING_FACTOR = scaling_factor try: ALPHA = float(ALPHA) except ValueError: if ALPHA!="auto": raise ValueError(f"Alpha can only be a float or 'auto', but given {ALPHA}") print(f"Apply NTK scaling with ALPHA={ALPHA}") if scaling_factor is None: print(f"The value of scaling factor will be read from model config file, or set to 1.") else: print(f"Warning: scaling factor is set to {SCALING_FACTOR}. \ If you set the value by hand, do not forget to update \ max_position_embeddings in the model config file.") transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init if hasattr(transformers.models.llama.modeling_llama,'LlamaLinearScalingRotaryEmbedding'): transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__ = adaptive_ntk_init transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward