File size: 29,024 Bytes
cc554fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import math
import os
import random
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import repeat
from torch import nn
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast, TokenClassifierOutput)
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
from transformers.utils import (ModelOutput, logging)
from transformers.utils.model_parallel_utils import (assert_device_map,
                                                     get_device_map)

from .configuration_nano import NanoConfig
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDynamicNTKScalingRotaryEmbedding, LlamaRotaryEmbedding, LlamaLinearScalingRotaryEmbedding

def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

class NanoAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.head_dim = config.hidden_size // config.num_attention_heads
        assert (
            self.head_dim * config.num_attention_heads == config.hidden_size
        ), "d_model must be divisible by n_head"
        self.use_bias = config.use_bias

        if not config.combined_qkv or config.kv_hidden_size is not None:
            self.query = nn.Linear(
                config.hidden_size, config.hidden_size, bias=self.use_bias
            )
            self.key = nn.Linear(
                config.hidden_size
                if not config.kv_hidden_size
                else config.kv_hidden_size,
                config.hidden_size,
                bias=self.use_bias,
            )
            self.value = nn.Linear(
                config.hidden_size
                if not config.kv_hidden_size
                else config.kv_hidden_size,
                config.hidden_size,
                bias=self.use_bias,
            )
        else:
            self.qkv = nn.Linear(
                config.hidden_size, config.hidden_size * 3, bias=self.use_bias
            )
        self.out = nn.Linear(config.hidden_size, config.hidden_size, bias=self.use_bias)
        self._init_rope()

    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = LlamaRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.config.max_position_embeddings,
                base=self.config.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.config.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.config.rope_theta,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.config.rope_theta,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def forward(self, x0, x1=None, causal=False, mask=None, position_ids=None, use_cache=True, layer_past=None):
        batch_size = x0.size(0)

        def split_heads(x):
            return x.view(
                batch_size, -1, self.config.num_attention_heads, self.head_dim
            ).transpose(1, 2)

        if not self.config.combined_qkv:
            q = split_heads(self.query(x0))
            k = split_heads(self.key(x1) if x1 is not None else self.key(x0))
            v = split_heads(
                self.value(x1 if x1 is not None else x0)
            )
        else:
            q, k, v = self.qkv(x0).chunk(3,-1)
            q = split_heads(q)
            k = split_heads(k)
            v = split_heads(v)

        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)

        cos, sin = self.rotary_emb(v, seq_len=v.shape[-2])
        if self.config.experimental_full_adaption_rank is not None:
            position_ids = position_ids.repeat_interleave(x0.shape[1]//position_ids.shape[-1],dim=1)
        q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)

        if use_cache is True:
            present = (k,v)
        else:
            present = None

        attn_output = F.scaled_dot_product_attention(
            q, k, v, attn_mask=None, dropout_p=0.0, is_causal=causal
        )
        attn_output = (
            attn_output.transpose(1, 2)
            .contiguous()
            .view(batch_size, -1, self.config.hidden_size)
        )
        return self.out(attn_output), present


class NanoGLU(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.gate_proj = nn.Linear(
            config.hidden_size, config.intermediate_size, bias=False
        )
        self.up_proj = nn.Linear(
            config.hidden_size, config.intermediate_size, bias=False
        )
        self.down_proj = nn.Linear(
            config.intermediate_size, config.hidden_size, bias=False
        )
        self.act_fn = ACT2FN[config.activation_function]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class NanoBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.attn = NanoAttention(config)
        self.ffn = NanoGLU(config)

        ln_class = LlamaRMSNorm if config.layernorm=="llamarmsnorm" else nn.LayerNorm
        self.ln1 = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)
        self.ln2 = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)

    def forward(self, x, mask=None, position_ids=None, use_cache=True, layer_past=None):

        if self.config.ffn == "llamalike":
            residual = x
            x = self.ln1(x)
            attn_out, attn_outs = self.attn(x, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
            x = residual + attn_out

            residual = x
            x = self.ln2(x)
            x = self.ffn(x)
            x = residual + x
        else: # ffn == "parallel"
            attn_in = self.ln1(x)
            ffn_in = self.ln2(x)

            attn_out, attn_outs = self.attn(attn_in, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
            ffn_out = self.ffn(ffn_in)

            x = x + attn_out + ffn_out
        
        if not use_cache: attn_outs = None
        return (x, attn_outs)



class NanoPreTrainedModel(PreTrainedModel):
    config_class = NanoConfig
    base_model_prefix = "transformer"
    is_parallelizable = False
    supports_gradient_checkpointing = True
    _no_split_modules = ["NanoBlock"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, NanoModel):
            module.gradient_checkpointing = value

class Split(nn.Module):
    def __init__(self, splits):
        super().__init__()
        self.splits=splits
    def forward(self, x):
        bs, tokens, _ = x.shape
        # print("SPLIT X0 SHAPE", x.shape)
        x = x.view(bs, tokens, self.splits, -1)
        x = x.permute(0, 1, 2, 3).reshape(bs, tokens * self.splits, -1)
        # print("SPLIT X1 SHAPE", x.shape)
        return x
    
class Recombine(nn.Module):
    def __init__(self, splits):
        super().__init__()
        self.splits = splits
    def forward(self, x):
        bs, _, _ = x.shape
        # print("RECOMBINE X SHAPE", x.shape)
        tokens = x.shape[1] // self.splits
        # print("RECOMBINE TOKENS", tokens, bs)
        x = x.view(bs, tokens, -1)
        # print("RECOMBINE X1.SHAPE", x.shape)
        return x

class Residual(nn.Module):
    def __init__(self, module, a=None):
        super().__init__()
        self.module = module
        self.a = nn.Parameter(torch.tensor(a, dtype=torch.bfloat16)) if a is not None else None
    def forward(self, x):
        return self.module(x) * (self.a if self.a is not None else 1) + x

class LoRA(nn.Module):
    def __init__(self, d, r, a=1):
        super().__init__()
        self.fn_i = nn.Linear(d, r)
        self.fn_o = nn.Linear(r, d)
        self.a = nn.Parameter(torch.tensor(a, dtype=self.fn_i.weight.dtype))
    def forward(self, x):
        return self.fn_o(self.fn_i(x)) * self.a + x
    def get_delta_w(self):
        return torch.mm(self.fn_o.weight, self.fn_i.weight) * self.a

class NanoModel(NanoPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        ln_class = LlamaRMSNorm if config.layernorm=="llamarmsnorm" else nn.LayerNorm
        
        if config.experimental_full_adaption_rank is None:
            if config.expanded_wte_size is not None:
                self.wte = nn.Sequential(
                    nn.Embedding(config.vocab_size, config.expanded_wte_size),
                    nn.Linear(config.expanded_wte_size, config.hidden_size),
                )
            else:
                self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
        else:
            assert config.expanded_wte_size is not None, "experimental full adaptation of token embeddings requires expanded_wte_size to be set"
            # self.wte = nn.Sequential(
            #     nn.Embedding(config.vocab_size, config.expanded_wte_size),
            #     LoRA(config.expanded_wte_size, config.experimental_full_adaption_rank),
            #     Split(config.expanded_wte_size//config.hidden_size)
            # )
            self.d_0 = config.expanded_wte_size if (config.full_adaptation_has_pre_proj == False) else config.pre_proj_dim
            # print("d_0", d_0)
            self.wte = nn.Sequential(
                nn.Embedding(config.vocab_size, config.expanded_wte_size),
                (
                    nn.Linear(config.expanded_wte_size, config.pre_proj_dim) if config.full_adaptation_has_pre_proj else nn.Identity()
                ),
                (
                    LoRA(self.d_0, config.experimental_full_adaption_rank)
                    if config.full_adaptation_type == "lora" else
                    nn.Linear(self.d_0, self.d_0)
                    if config.full_adaptation_type == "linear" else
                    Residual(
                        nn.Linear(self.d_0, self.d_0)
                    )
                    if config.full_adaptation_type == "linear-r" else
                    Residual(
                        nn.Linear(self.d_0, self.d_0), 1
                    )
                    if config.full_adaptation_type == "linear-ra" else
                    nn.Identity()
                ),
                Split(self.d_0//config.hidden_size)
            )
        self.h = nn.ModuleList(
            [NanoBlock(config) for i in range(config.num_hidden_layers)]
        )
        self.ln_f = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.wte[0] if self.config.expanded_wte_size is not None else self.wte

    def set_input_embeddings(self, new_embeddings):
        if self.config.expanded_wte_size is not None:
            self.wte[0] = new_embeddings
        else:
            self.wte = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        # soooo not all of the params are able to be used, since I just copied this framework from modeling_gpt2            

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(
                past_length,
                input_shape[-1] + past_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            attention_mask = attention_mask[:, None, None, :]
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        if self.config.add_cross_attention and encoder_hidden_states is not None:
            (
                encoder_batch_size,
                encoder_sequence_length,
                _,
            ) = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_attention_mask = None

        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
            # print("inputs embeds shape", inputs_embeds.shape)
        
        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        # output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
        output_shape = (-1,) + (hidden_states.shape[1],) + (hidden_states.size(-1),)
        # print(output_shape, "output shape")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                # logger.warning_once(
                #     "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                # )
                use_cache = False

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = (
            () if output_attentions and self.config.add_cross_attention else None
        )
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                if layer_past is not None:
                    layer_past = tuple(
                        past_state.to(hidden_states.device)
                        for past_state in layer_past
                    )
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = block(hidden_states, mask=attention_mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
            hidden_states = outputs[0]
            if use_cache == True:
                presents = presents + (outputs[1],)

        hidden_states = self.ln_f(hidden_states)
        hidden_states = hidden_states.view(output_shape)
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, None, all_hidden_states, None, None]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=None,
            cross_attentions=None,
        )

class NanoModelForCausalLM(NanoPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.transformer = NanoModel(config)
        if config.experimental_full_adaption_rank is None or config.full_adaptation_type == "no":
            if (config.expanded_lm_head_size is not None):
                self.lm_head = nn.Sequential(
                    nn.Linear(
                        config.hidden_size, config.expanded_lm_head_size, bias=config.lm_head_projection_bias
                    ),
                    nn.Linear(
                        config.expanded_lm_head_size, config.vocab_size, bias=config.lm_head_bias
                    ),
                )
            else:
                self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
        else:
            d_0 = config.expanded_lm_head_size if (not config.full_adaptation_has_pre_proj) else config.pre_proj_dim
            self.lm_head = nn.Sequential(
                Recombine(d_0//config.hidden_size),
                nn.Identity() if not config.full_adaptation_has_pre_proj else nn.Linear(d_0, config.expanded_lm_head_size),
                (
                    LoRA(config.expanded_lm_head_size, config.experimental_full_adaption_rank)
                    if config.full_adaptation_type == "lora" else
                    nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size)
                    if config.full_adaptation_type == "linear" else
                    Residual(
                        nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size)
                    )
                    if config.full_adaptation_type == "linear-r" else
                    Residual(
                        nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size), 1
                    )
                    if config.full_adaptation_type == "linear-ra" else
                    nn.Identity()
                ),
                
                nn.Linear(config.expanded_lm_head_size, config.vocab_size)
            )
        self.model_parallel = False
        self.device_map = None
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head if (self.config.experimental_full_adaption_rank is None and self.config.expanded_lm_head_size is None) else self.lm_head[-1] 

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
    ):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )
        return model_inputs

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        # print("Hidden states shape", hidden_states.shape)
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past
            )
            for layer_past in past_key_values
        )


class VTMModelForCausalLM(NanoModelForCausalLM):
    _tied_weights_keys = ["lm_head.3.weight"]
    def __init__(self, config):
        super().__init__(config)

class VTMPreProjModelForCausalLM(NanoModelForCausalLM):
    _tied_weights_keys = ["lm_head.3.weight"]
    def __init__(self, config):
        super().__init__(config)

class PlusModelForCausalLM(NanoModelForCausalLM):
    _tied_weights_keys = ["lm_head.1.weight"]
    def __init__(self, config):
        super().__init__(config)