mins
eva_base_tiny
c501468
raw
history blame
1.66 kB
# ---------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ---------------------------------------------
# Modified by Zhiqi Li
# ---------------------------------------------
# Modified by Shihao Wang
# ---------------------------------------------
import math
import torch
from torch.utils.data import DistributedSampler as _DistributedSampler
from .sampler import SAMPLER
@SAMPLER.register_module()
class DistributedSampler(_DistributedSampler):
def __init__(self,
dataset=None,
num_replicas=None,
rank=None,
shuffle=True,
seed=0):
super().__init__(
dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
# for the compatibility from PyTorch 1.3+
self.seed = seed if seed is not None else 0
def __iter__(self):
# deterministically shuffle based on epoch
if self.shuffle:
assert False
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
# in case that indices is shorter than half of total_size
indices = (indices *
math.ceil(self.total_size / len(indices)))[:self.total_size]
assert len(indices) == self.total_size
# subsample
per_replicas = self.total_size//self.num_replicas
# indices = indices[self.rank:self.total_size:self.num_replicas]
indices = indices[self.rank*per_replicas:(self.rank+1)*per_replicas]
assert len(indices) == self.num_samples
return iter(indices)