File size: 7,150 Bytes
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d417650
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d417650
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Instruction-tuning with LoRA on the Alpaca dataset.

Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
"""
import os
import time

import lightning as L
import numpy as np
import torch

from generate import generate
from lit_llama.lora import mark_only_lora_as_trainable, lora, lora_state_dict
from lit_llama.model import LLaMA, LLaMAConfig
from lit_llama.tokenizer import Tokenizer
from scripts.prepare_alpaca import generate_prompt


eval_interval = 100
save_interval = 100
eval_iters = 100
log_interval = 1

# Hyperparameters
learning_rate = 3e-4
batch_size = 128
micro_batch_size = 4
gradient_accumulation_steps = batch_size // micro_batch_size
max_iters = 10000 #50000 * 3 // micro_batch_size
weight_decay = 0.0
max_seq_length = 256  # see scripts/prepare_alpaca.py
lora_r = 8
lora_alpha = 16
lora_dropout = 0.05
warmup_steps = 100


def main(
    data_dir: str = "data/alpaca", 
    pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
    out_dir: str = "out/lora/alpaca",
):

    #fabric = L.Fabric(accelerator="cuda", precision="bf16-true")
    fabric = L.Fabric(accelerator="cpu", devices=1, precision="bf16-true")
    fabric.launch()
    fabric.seed_everything(1337 + fabric.global_rank)

    if fabric.global_rank == 0:
        os.makedirs(out_dir, exist_ok=True)
    print("loading dataset ", data_dir)
    train_data, val_data = load_datasets(data_dir=data_dir)
    print("train data: ", len(train_data))
    print("val data: ", len(val_data))
    config = LLaMAConfig.from_name("7B")
    config.block_size = max_seq_length
    print("loading pretrained model ", pretrained_path)
    checkpoint = torch.load(pretrained_path)

    with fabric.init_module(), lora(r=lora_r, alpha=lora_alpha, dropout=lora_dropout, enabled=True):
        model = LLaMA(config)
        # strict=False because missing keys due to LoRA weights not contained in checkpoint state
        model.load_state_dict(checkpoint, strict=False)

    mark_only_lora_as_trainable(model)

    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
    model, optimizer = fabric.setup(model, optimizer)
    print("start training")
    train(fabric, model, optimizer, train_data, val_data, out_dir)

    # Save the final LoRA checkpoint at the end of training
    print(f"Saving LoRA weights to {out_dir}")
    checkpoint = lora_state_dict(model)
    fabric.save(os.path.join(out_dir, "lit-llama-lora-finetuned.pth"), checkpoint)


def train(
    fabric: L.Fabric,
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    train_data: np.ndarray,
    val_data: np.ndarray,
    out_dir: str,
) -> None:
    """The training loop.

    Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
    """
    step_count = 0
    print("max iters:", max_iters )

    for iter_num in range(max_iters):
        print("iter_num", iter_num)
        if step_count <= warmup_steps:
            # linear warmup
            lr = learning_rate * step_count / warmup_steps
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        t0 = time.time()

        input_ids, targets = get_batch(fabric, train_data)
        logits = model(input_ids)
        print("calculate loss")
        loss = loss_fn(logits, targets)
        print("backward")
        fabric.backward(loss)

        if (iter_num + 1) % gradient_accumulation_steps == 0:
            print("step optimizer")
            optimizer.step()
            optimizer.zero_grad()
            step_count += 1
            if step_count % eval_interval == 0:
                val_loss = validate(fabric, model, val_data)
                fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
                fabric.barrier()

            if step_count % save_interval == 0:
                print(f"Saving LoRA weights to {out_dir}")
                # We are only saving the LoRA weights
                # TODO: Provide a function/script to merge the LoRA weights with pretrained weights
                checkpoint = lora_state_dict(model)
                fabric.save(os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"), checkpoint)

        dt = time.time() - t0
        if iter_num % log_interval == 0:
            fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")


def generate_response(model, instruction):
    tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
    sample = {"instruction": instruction, "input": ""}
    prompt = generate_prompt(sample)
    encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)

    output = generate(
        model,
        idx=encoded,
        max_seq_length=max_seq_length,
        max_new_tokens=100,
    )
    output = tokenizer.decode(output)
    return output # output.split("### Response:")[1].strip()


@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
    fabric.print("Validating ...")
    model.eval()
    losses = torch.zeros(eval_iters)
    for k in range(eval_iters):
        input_ids, targets = get_batch(fabric, val_data)
        logits = model(input_ids)
        loss = loss_fn(logits, targets)
        losses[k] = loss.item()
    out = losses.mean()

    # produce an example:
    instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
    output = generate_response(model, instruction)
    fabric.print(instruction)
    fabric.print(output)

    model.train()
    return out.item()

def loss_fn(logits, targets):
    # shift the targets such that output n predicts token n+1
    logits = logits[..., :-1, :].contiguous()
    targets = targets[..., 1:].contiguous()
    loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
    return loss
    

def get_batch(fabric: L.Fabric, data: list):
    ix = torch.randint(len(data), (micro_batch_size,))

    input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
    labels = [data[i]["labels"].type(torch.int64) for i in ix]

    max_len = max(len(s) for s in input_ids)

    def pad_right(x, pad_id):
        # pad right based on the longest sequence
        n = max_len - len(x)
        return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))

    x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
    y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
    x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
    return x, y


def load_datasets(data_dir):
    train_data = torch.load(os.path.join(data_dir, "train.pt"))
    val_data = torch.load(os.path.join(data_dir, "test.pt"))
    return train_data, val_data


if __name__ == "__main__":
    # Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
    # torch.backends.cuda.enable_flash_sdp(False)
    torch.set_float32_matmul_precision("high")
    
    from jsonargparse.cli import CLI

    CLI(main)