File size: 21,537 Bytes
12001a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import os
from contextlib import contextmanager
import warnings
import math

import torch

# configuration for bitsandbytes before import
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
warnings.filterwarnings(
    "ignore",
    message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization",
)
warnings.filterwarnings(
    "ignore",
    message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
warnings.filterwarnings(
    "ignore",
    message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable.",
)

try:
    import bitsandbytes as bnb  # noqa: E402
except:
    bnb = None

try:
    import triton  # noqa: E402
    import triton.language as tl  # noqa: E402
except:
    triton = None

if bnb is not None:

    class Linear8bitLt(bnb.nn.Linear8bitLt):
        """Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and
        re-quantizaton when loading the state dict.


        This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly.
        """

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0)
            # We quantize the initial weight here so we don't end up filling the device
            # memory with float32 weights which could lead to OOM.
            self._quantize_weight(self.weight.data)

        def _load_from_state_dict(self, local_state_dict, *args, **kwargs):
            # There is only one key that ends with `*.weight`, the other one is the bias
            weight_key = next(
                (name for name in local_state_dict.keys() if name.endswith("weight")),
                None,
            )
            if weight_key is None:
                return

            # Load the weight from the state dict and re-quantize it
            weight = local_state_dict.pop(weight_key)
            self._quantize_weight(weight)

            # If there is a bias, let nn.Module load it
            if local_state_dict:
                super()._load_from_state_dict(local_state_dict, *args, **kwargs)

        def _quantize_weight(self, weight: torch.Tensor) -> None:
            # This code is taken and adapted from `bnb.nn.Int8Params.cuda()`
            B = weight.contiguous().half().cuda()
            CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
            del CBt
            del SCBt
            self.weight.data = CB
            setattr(self.weight, "CB", CB)
            setattr(self.weight, "SCB", SCB)


if triton is not None:
    # This is adapted from the OpenAI Triton matmul example.
    @triton.autotune(
        configs=[
            triton.Config(
                {
                    "BLOCK_SIZE_M": 128,
                    "BLOCK_SIZE_N": 256,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=3,
                num_warps=8,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 256,
                    "BLOCK_SIZE_N": 128,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=3,
                num_warps=8,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 256,
                    "BLOCK_SIZE_N": 64,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 64,
                    "BLOCK_SIZE_N": 256,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 128,
                    "BLOCK_SIZE_N": 128,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 128,
                    "BLOCK_SIZE_N": 64,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 64,
                    "BLOCK_SIZE_N": 128,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 128,
                    "BLOCK_SIZE_N": 32,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=4,
                num_warps=4,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 64,
                    "BLOCK_SIZE_N": 32,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=5,
                num_warps=2,
            ),
            triton.Config(
                {
                    "BLOCK_SIZE_M": 32,
                    "BLOCK_SIZE_N": 64,
                    "BLOCK_SIZE_K": 32,
                    "GROUP_SIZE_M": 8,
                },
                num_stages=5,
                num_warps=2,
            ),
        ],
        key=["M", "N", "K"],
    )
    @triton.jit
    def linear_kernel_4bit_weight(
        # Pointers to matrices
        a_ptr,
        b_ptr,
        c_ptr,
        bscales_ptr,
        bzeros_ptr,
        # bdequant,
        # Matrix dimensions
        M,
        N,
        K,
        # The stride variables represent how much to increase the ptr by when moving by 1
        # element in a particular dimension. E.g. stride_am is how much to increase a_ptr
        # by to get the element one row down (A has M rows)
        stride_am,
        stride_ak,
        stride_bk,
        stride_bn,
        stride_cm,
        stride_cn,
        # Meta-parameters
        BLOCK_SIZE_M: tl.constexpr,
        BLOCK_SIZE_N: tl.constexpr,
        BLOCK_SIZE_K: tl.constexpr,
        GROUP_SIZE_M: tl.constexpr,
    ):
        """Kernel for computing the matmul C = A x B.T.
        A has shape (M, K), B has shape (N, K) and C has shape (M, N)
        """
        # -----------------------------------------------------------
        # Map program ids `pid` to the block of C it should compute.
        # This is done in a grouped ordering to promote L2 data reuse
        # See above `L2 Cache Optimizations` section for details
        pid = tl.program_id(axis=0)
        num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
        num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
        num_pid_in_group = GROUP_SIZE_M * num_pid_n
        group_id = pid // num_pid_in_group
        first_pid_m = group_id * GROUP_SIZE_M
        group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
        pid_m = first_pid_m + (pid % group_size_m)
        pid_n = (pid % num_pid_in_group) // group_size_m

        # ----------------------------------------------------------
        # Create pointers for the first blocks of A and B.
        # We will advance this pointer as we move in the K direction
        # and accumulate
        # a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
        # b_ptrs is a block of [BLOCK_SIZE_K, BLOCK_SIZE_n] pointers
        # see above `Pointer Arithmetics` section for details
        offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
        a_mask = offs_am[:, None] < M
        b_mask = offs_bn[None, :] < N
        offs_k = tl.arange(0, BLOCK_SIZE_K)
        a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
        b_ptrs = b_ptr + (
            (offs_k[:, None] // 2) * stride_bk + offs_bn[None, :] * stride_bn
        )

        bscales_ptrs = bscales_ptr + offs_bn[None, :]
        bzeros_ptrs = bzeros_ptr + offs_bn[None, :]

        scale = tl.load(bscales_ptrs)
        zero = tl.load(bzeros_ptrs)
        # -----------------------------------------------------------
        # Iterate to compute a block of the C matrix
        # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
        # of fp32 values for higher accuracy.
        # `accumulator` will be converted back to fp16 after the loop
        accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
        for k in range(0, K, BLOCK_SIZE_K):
            # wasteful as it is to load everything twice, my attempts at avoiding it lead to slower code
            b12 = tl.load(b_ptrs, mask=b_mask)
            # Note that for simplicity, we don't apply a mask in K here.
            a = tl.load(a_ptrs, mask=a_mask).to(tl.float32)
            b = (
                ((b12.to(tl.uint8) >> ((offs_k[:, None] % 2) * 4)) & 0xF).to(tl.float32)
                - zero
            ) * scale
            accumulator += tl.dot(a, b)

            # Advance the ptrs to the next K block
            a_ptrs += BLOCK_SIZE_K * stride_ak
            b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
        c = accumulator

        # -----------------------------------------------------------
        # Write back the block of the output matrix C
        offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
        c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
        c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
        tl.store(c_ptrs, c, mask=c_mask)

    def qlinear_4bit_weight(inp, weight, scales, zeros):
        weight = weight.t().contiguous()
        c_shape = inp.shape[:-1] + weight.shape[-1:]
        inp = inp.reshape(-1, inp.shape[-1]).contiguous()
        # we pad the input to amortize triton compilation cost better
        PAD_TO = 256
        if inp.shape[0] % PAD_TO != 0:
            c_crop = inp.shape[0]
            new_inp_shape0 = inp.shape[0] + PAD_TO - inp.shape[0] % PAD_TO
            inp2 = inp.new_empty((new_inp_shape0, inp.shape[1]))
            inp2[: inp.shape[0]] = inp
            inp2[inp.shape[0] :].zero_()
            inp = inp2
        else:
            c_crop = None

        assert inp.shape[1] == weight.shape[0] * 2, "incompatible dimensions"

        assert scales.shape == (weight.shape[1], 1)
        assert zeros.shape == (weight.shape[1], 1)
        scales = scales.contiguous()
        zeros = zeros.contiguous()
        K, N = weight.shape
        M, K = inp.shape
        assert (
            K % 32 == 0
        ), "We don't check memory-out-of-bounds with K so K must be divisible by BLOCK_SIZE_K"
        # allocates output
        c = torch.empty((M, N), device=inp.device, dtype=inp.dtype)
        # 1D launch kernel where each block gets its own program.
        grid = lambda META: (
            triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
        )
        linear_kernel_4bit_weight[grid](
            inp,
            weight,
            c,
            scales,
            zeros,
            M,
            N,
            K,
            inp.stride(0),
            inp.stride(1),
            weight.stride(0),
            weight.stride(1),
            c.stride(0),
            c.stride(1),
        )
        return c[:c_crop].reshape(c_shape)

else:
    qlinear_4bit_weight = None


# for correctness but with terrible perf
class ColBlockQuantizedLinear(torch.nn.Module):
    def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.tile_cols = tile_cols if tile_cols != -1 else self.in_features
        self.bits = bits
        self.entries_per_byte = 8 // bits
        assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8
        assert in_features % self.entries_per_byte == 0
        self.register_buffer(
            "quant_weight",
            torch.empty(
                (self.out_features, self.in_features // self.entries_per_byte),
                dtype=torch.uint8,
            )
            .t()
            .contiguous()
            .t(),
        )
        self.register_buffer(
            "scales",
            torch.empty(
                (
                    self.out_features,
                    (self.in_features + self.tile_cols - 1) // self.tile_cols,
                )
            ),
        )
        self.register_buffer("zeros", torch.empty_like(self.scales))
        assert isinstance(bias, bool)
        if bias:
            self.register_buffer("bias", torch.empty((self.out_features,)))
        else:
            self.register_buffer("bias", None)

    def pack_weight(self, weight):
        weight = weight.to(device=self.quant_weight.device, copy=True)
        for j in range(self.scales.size(1)):
            weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] /= self.scales[
                :, j : j + 1
            ]
            weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] += self.zeros[
                :, j : j + 1
            ]
        weight = weight.clamp_(min=0, max=2**self.bits - 1).to(dtype=torch.uint8)
        self.quant_weight.zero_()
        for nr in range(self.entries_per_byte):
            self.quant_weight += weight[:, nr :: self.entries_per_byte] << (
                nr * self.bits
            )

    def get_weight(self, dtype=torch.float):
        weight = torch.empty(
            (self.out_features, self.in_features),
            device=self.quant_weight.device,
            dtype=dtype,
        )
        mask = (1 << self.bits) - 1
        for nr in range(self.entries_per_byte):
            weight[:, nr :: self.entries_per_byte] = (
                (self.quant_weight >> (nr * self.bits)) & mask
            ).float()
        self.quant_weight.to(dtype)
        for j in range(self.scales.size(1)):
            weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] -= self.zeros[
                :, j : j + 1
            ]
            weight[:, j * self.tile_cols : (j + 1) * self.tile_cols] *= self.scales[
                :, j : j + 1
            ]
        return weight

    def forward(self, inp):
        if (
            triton is not None
            and self.bits == 4
            and self.quant_weight.device.type == "cuda"
            and self.zeros.shape[1] == 1
            and self.quant_weight.shape[1] % 32 == 0
        ):
            return qlinear_4bit_weight(inp, self.quant_weight, self.scales, self.zeros)
        weight = self.get_weight(dtype=inp.dtype)
        return torch.nn.functional.linear(inp, weight, self.bias)


class GPTQQuantizer:
    # The algorithm and code has been taken from  https://github.com/IST-DASLab/gptq/
    # E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
    # portions copyright by the authors licensed under the Apache License 2.0
    # All errors are our own.

    def __init__(
        self,
        linear_module,
        *,
        bits,
        perchannel=True,
        sym=False,
        blocksize=128,
        percdamp=0.01,
        groupsize=-1,
        actorder=False
    ):
        assert isinstance(linear_module, torch.nn.Linear)

        self.linear_module = linear_module
        self.dev = self.linear_module.weight.device
        self.rows = linear_module.weight.shape[0]
        self.columns = linear_module.weight.shape[1]
        self.H = torch.zeros((self.columns, self.columns), device=self.dev)
        self.nsamples = 0
        self.bits = bits
        self.maxq = 2**bits - 1
        self.perchannel = perchannel
        self.sym = sym
        self.blocksize = blocksize
        self.percdamp = percdamp
        self.groupsize = groupsize
        self.actorder = actorder
        self.tile_cols = self.columns if groupsize == -1 else groupsize
        self.scales = torch.zeros(
            (self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols),
            dtype=self.linear_module.weight.dtype,
            device=self.dev,
        )
        self.zeros = torch.zeros_like(self.scales)
        assert not (
            self.actorder and self.groupsize != -1
        ), "The permutation trick does not work for grouped quantization"

    @staticmethod
    def quantize_weight(x, scale, zero, maxq):
        q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
        x_rec = scale * (q - zero)
        return x_rec

    def find_params_weight(self, x):
        dev = x.device

        shape = x.shape
        if self.perchannel:
            x = x.flatten(1)
        else:
            x = x.flatten().unsqueeze(0)

        tmp = torch.zeros(x.shape[0], device=dev)
        xmin = torch.minimum(x.min(1)[0], tmp)
        xmax = torch.maximum(x.max(1)[0], tmp)

        if self.sym:
            xmax = torch.maximum(torch.abs(xmin), xmax)
            tmp = xmin < 0
            if torch.any(tmp):
                xmin[tmp] = -xmax[tmp]
        tmp = (xmin == 0) & (xmax == 0)
        xmin[tmp] = -1
        xmax[tmp] = +1

        scale = (xmax - xmin) / self.maxq
        if self.sym:
            zero = torch.full_like(scale, (self.maxq + 1) / 2)
        else:
            zero = torch.round(-xmin / scale)

        if not self.perchannel:
            tmp = shape[0]
            scale = scale.repeat(tmp)
            zero = zero.repeat(tmp)

        shape = [-1] + [1] * (len(shape) - 1)
        scale = scale.reshape(shape)
        zero = zero.reshape(shape)
        return scale, zero

    def collect_input_stats(self, _1, inp, _2):
        inp = inp[0].detach()
        self.last_inp = inp
        if len(inp.shape) == 2:
            inp = inp.unsqueeze(0)
        tmp = inp.shape[0]
        if len(inp.shape) == 3:
            inp = inp.reshape((-1, inp.shape[-1]))
        inp = inp.t()
        self.H *= self.nsamples / (self.nsamples + tmp)
        self.nsamples += tmp
        # inp = inp.float()
        inp = math.sqrt(2 / self.nsamples) * inp.float()
        # self.H += 2 / self.nsamples * inp.matmul(inp.t())
        self.H += inp.matmul(inp.t())

    def quantize(self):
        W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True)

        scale, zero = self.find_params_weight(W)
        self.scales[:] = scale
        self.zeros[:] = zero

        H = self.H
        del self.H
        dead = torch.diag(H) == 0
        H[dead, dead] = 1
        W[:, dead] = 0
        if self.actorder:
            perm = torch.argsort(torch.diag(H), descending=True)
            W = W[:, perm]
            H = H[perm][:, perm]

        Losses = torch.zeros_like(W)
        Q = torch.zeros_like(W)

        damp = self.percdamp * torch.mean(torch.diag(H))
        diag = torch.arange(self.columns, device=self.dev)
        H[diag, diag] += damp
        H = torch.linalg.cholesky(H)
        H = torch.cholesky_inverse(H)
        H = torch.linalg.cholesky(H, upper=True)
        Hinv = H

        for i1 in range(0, self.columns, self.blocksize):
            i2 = min(i1 + self.blocksize, self.columns)
            count = i2 - i1

            W1 = W[:, i1:i2].clone()
            Q1 = torch.zeros_like(W1)
            Err1 = torch.zeros_like(W1)
            Losses1 = torch.zeros_like(W1)
            Hinv1 = Hinv[i1:i2, i1:i2]

            for i in range(count):
                w = W1[:, i]
                d = Hinv1[i, i]

                if self.groupsize != -1:
                    if (i1 + i) % self.groupsize == 0:
                        scale, zero = self.find_params_weight(
                            W[:, (i1 + i) : (i1 + i + self.groupsize)]
                        )
                        self.scales[:, (i1 + i) // self.groupsize] = scale
                        self.zeros[:, (i1 + i) // self.groupsize] = zeros

                q = self.quantize_weight(w.unsqueeze(1), scale, zero, self.maxq)
                q = q.squeeze(1)
                assert q.dim() == 1
                Q1[:, i] = q
                Losses1[:, i] = (w - q) ** 2 / d**2

                err1 = (w - q) / d
                W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
                Err1[:, i] = err1

            Q[:, i1:i2] = Q1
            Losses[:, i1:i2] = Losses1 / 2

            W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])

        if self.actorder:
            invperm = torch.argsort(perm)
            Q = Q[:, invperm]

        weight = Q.reshape(self.linear_module.weight.shape).to(
            self.linear_module.weight.data.dtype
        )
        error = torch.sum(Losses).item()

        q_module = ColBlockQuantizedLinear(
            self.linear_module.in_features,
            self.linear_module.out_features,
            self.linear_module.bias is not None,
            bits=self.bits,
            tile_cols=self.groupsize,
        ).to(self.dev)
        q_module.scales = self.scales
        q_module.zeros = self.zeros
        q_module.pack_weight(weight)
        q_module.bias = self.linear_module.bias
        return q_module, error