File size: 24,120 Bytes
ddb86ea
ad2b48c
55b8542
6045345
097d367
ad2b48c
2bb0b78
ebaec3c
2bb0b78
097d367
2bb0b78
097d367
6045345
2bb0b78
097d367
6045345
ee26281
6045345
 
2bb0b78
c49729d
ee26281
 
 
 
6045345
1210dc8
7b55fe6
1210dc8
 
 
2bb0b78
 
7dc580b
 
 
 
9105935
553a86b
 
6045345
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebaec3c
c49729d
 
 
 
 
 
 
 
 
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c49729d
 
7dc580b
 
 
 
 
c49729d
 
7dc580b
 
 
 
 
 
 
 
 
c49729d
7dc580b
 
c49729d
 
 
 
 
 
 
7dc580b
 
 
 
 
 
 
 
 
2bb0b78
 
 
 
 
 
 
 
 
 
ee26281
 
 
 
 
 
 
 
 
 
58cf7e7
ee26281
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee26281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb0b78
 
 
 
 
 
 
 
 
 
7dc580b
 
ddb86ea
 
 
 
 
 
 
 
ce34d64
37293dc
 
 
ce34d64
 
 
9493b1b
 
3a50377
9493b1b
 
 
 
 
 
 
3a50377
9493b1b
 
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50682a3
 
 
 
 
2bb0b78
50682a3
2bb0b78
50682a3
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5247c50
 
2bb0b78
 
 
 
5a1985b
 
 
 
2bb0b78
 
 
 
 
c01015f
 
 
7748f3d
 
 
 
 
 
 
 
 
 
6045345
 
 
 
 
 
ddb86ea
6045345
 
 
2cfe9e9
 
 
 
ddb86ea
dd00657
7748f3d
 
 
c0f50d9
7748f3d
 
 
 
 
 
 
 
c0f50d9
7748f3d
 
 
29936bb
ad2b48c
 
 
6045345
c01015f
 
 
 
c49729d
 
 
6d0ee4b
 
 
 
 
 
 
 
 
e79c8e6
 
612aabd
1514739
612aabd
73a0b6e
 
 
5491278
 
612aabd
2bb0b78
 
 
 
 
5d48a10
da10af0
 
 
 
5d48a10
da10af0
 
5d48a10
b3f5e00
 
 
 
008505c
b3f5e00
 
ebaec3c
3c2ad00
2bb0b78
6045345
2bc1a5b
 
 
6045345
a10a826
6045345
 
2ef4634
6045345
2bb0b78
ddb86ea
cfcc549
 
2ef4634
 
ddb86ea
 
 
6045345
 
 
 
36aaea0
2bc1a5b
 
 
247825b
2bb0b78
 
6045345
 
 
 
 
ad2b48c
 
 
7748f3d
 
 
dd00657
ddb86ea
9493b1b
7748f3d
0a472e1
 
 
 
7748f3d
 
 
 
 
0a472e1
 
 
 
7748f3d
 
 
0a472e1
 
 
 
7748f3d
6045345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9105935
99383f1
6045345
 
9105935
 
 
 
 
 
 
6045345
 
 
 
 
 
 
 
813aab3
7b55fe6
6045345
 
 
 
 
813aab3
99383f1
37293dc
 
 
 
813aab3
6045345
1210dc8
 
 
94f5e41
 
 
 
 
 
2bb0b78
 
 
0d6708b
55b8542
974dc00
 
 
 
 
55b8542
974dc00
55b8542
553a86b
55b8542
 
 
974dc00
55b8542
 
 
 
ce34d64
 
e65aeed
7dc580b
ce34d64
9493b1b
6045345
 
 
 
2bb0b78
94f5e41
 
 
6045345
cc77bab
6045345
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""Module containing the Trainer class and related functions"""
import importlib
import logging
import math
import os
import sys
from contextlib import contextmanager
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Optional, Union

import bitsandbytes as bnb
import numpy as np
import torch.cuda
import transformers
from datasets import Dataset, set_caching_enabled
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
from transformers.trainer_pt_utils import (
    SequentialDistributedSampler,
    get_parameter_names,
)

from axolotl.utils.callbacks import (
    GPUStatsCallback,
    SaveBetterTransformerModelCallback,
    SavePeftModelCallback,
)
from axolotl.utils.collators import DataCollatorForSeq2Seq
from axolotl.utils.dataloader import MultipackDistributedDataloader
from axolotl.utils.schedulers import (
    InterpolatingLogScheduler,
    get_cosine_schedule_with_quadratic_warmup,
)

LOG = logging.getLogger("axolotl")


@torch.jit.script
def weighted_cross_entropy(
    logits: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor
):
    # Flatten the logits, labels, and weights tensors
    logits = logits.view(
        -1, logits.size(-1)
    )  # logits becomes of shape [batch_size*sequence_length, vocab_size]
    labels = labels.view(-1)  # labels becomes of shape [batch_size*sequence_length]
    weights = weights.view(-1)  # weights becomes of shape [batch_size*sequence_length]

    # Compute the unweighted cross entropy loss
    losses = torch.nn.functional.cross_entropy(logits, labels, reduction="none")

    # Apply the weights to the losses and compute their sum
    return (weights * losses).sum()


@torch.jit.script
def create_weighted_mask(labels: torch.Tensor):
    # Check if the tensor is 2D. If not, unsqueeze it to make it 2D
    if len(labels.shape) == 1:
        labels = labels.unsqueeze(0)

    weights = torch.zeros_like(labels).float()
    for i in range(labels.shape[0]):
        mask = labels[i] != -100

        # Create a tensor to track group ids
        group_ids = torch.zeros_like(labels[i]).int()
        curr_group_id = 0

        for j in range(1, len(labels[i])):
            if mask[j] and not mask[j - 1]:  # switch from masked to unmasked label
                curr_group_id += 1  # start new group
            group_ids[j] = (
                curr_group_id if mask[j] else 0
            )  # assign group id if unmasked label

        # Count only unmasked labels in each group
        group_counts = torch.bincount(group_ids[mask])

        mask_weights = torch.zeros_like(labels[i]).float()
        mask_weights[mask] = 1.0 / group_counts[group_ids[mask]]

        weights[i] = mask_weights

    return weights.squeeze()  # squeeze the output to match the input dimension


def trainer_weighted_loss(model_output, labels, shift_labels=True):
    logits = (
        model_output["logits"] if isinstance(model_output, dict) else model_output[0]
    )
    if shift_labels:
        logits = logits[..., :-1, :].contiguous()
        labels = labels[..., 1:].contiguous()

    weights = create_weighted_mask(labels)
    return weighted_cross_entropy(logits, labels, weights)


@dataclass
class AxolotlTrainingArguments(TrainingArguments):
    """
    Extend the base TrainingArguments for axolotl helpers
    """

    lr_quadratic_warmup: bool = field(
        default=False,
        metadata={"help": "Use quadratic warmup for cosine scheduling."},
    )
    sample_packing: bool = field(
        default=False,
        metadata={"help": "Use sample packing for efficient training."},
    )
    sample_packing_efficiency: float = field(
        default=1.0,
        metadata={"help": "Sample packing efficiency for calculating batch length."},
    )
    max_seq_length: int = field(
        default=2048,
        metadata={"help": "The maximum sequence length the model can handle"},
    )
    sample_packing_seq_len_multiplier: int = field(
        default=1,
        metadata={"help": "the multiplier for the max len for packed sequences"},
    )


class AxolotlTrainer(Trainer):
    """
    Extend the base Trainer for axolotl helpers
    """

    args = None  # type: AxolotlTrainingArguments

    def create_scheduler(
        self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
    ):
        """
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.

        Args:
            num_training_steps (int): The number of training steps to do.
            optimizer (torch.optim.Optimizer): The training optimizer
        """

        # fmt: off
        if self.lr_scheduler is None:  # type: ignore  # pylint: disable=access-member-before-definition
            # fmt: on
            if (
                self.args.lr_scheduler_type == "cosine"
                and self.args.lr_quadratic_warmup is True
            ):
                self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup(  # pylint: disable=attribute-defined-outside-init
                    optimizer,
                    num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
                    num_training_steps=num_training_steps,
                )
            else:
                return super().create_scheduler(num_training_steps, optimizer)
        return self.lr_scheduler

    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
        if self.args.world_size > 1 and self.args.sample_packing:
            return DistributedSampler(
                self.train_dataset,
                num_replicas=self.args.world_size,
                rank=self.args.process_index,
                seed=self.args.seed,
            )
        return super()._get_train_sampler()

    def _get_eval_sampler(
        self, eval_dataset: Dataset
    ) -> Optional[torch.utils.data.Sampler]:
        if self.args.world_size > 1 and self.args.sample_packing:
            return SequentialDistributedSampler(
                eval_dataset,
                num_replicas=self.args.world_size,
                rank=self.args.process_index,
                batch_size=self.args.per_device_eval_batch_size,
            )
        return super()._get_eval_sampler(eval_dataset)

    def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
        if self.args.sample_packing:
            train_sampler = self._get_train_sampler()
            return self.accelerator.prepare(
                MultipackDistributedDataloader(
                    self.train_dataset,
                    batch_size=self._train_batch_size,
                    seq_max_length=self.args.max_seq_length,
                    collate_fn=self.data_collator,
                    sampler=train_sampler,
                    packing_efficiency_estimate=self.args.sample_packing_efficiency,
                    sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
                    device_count=int(os.environ.get("WORLD_SIZE", 1)),
                )
            )
        return super().get_train_dataloader()

    def get_eval_dataloader(
        self, eval_dataset: Optional[Dataset] = None
    ) -> Union[DataLoader, MultipackDistributedDataloader]:
        if self.args.sample_packing:
            eval_dataset = (
                eval_dataset if eval_dataset is not None else self.eval_dataset
            )

            eval_sampler = self._get_eval_sampler(eval_dataset)
            return self.accelerator.prepare(
                MultipackDistributedDataloader(
                    eval_dataset,
                    batch_size=self.args.eval_batch_size,
                    seq_max_length=self.args.max_seq_length,
                    collate_fn=self.data_collator,
                    sampler=eval_sampler,
                    packing_efficiency_estimate=self.args.sample_packing_efficiency,
                    sample_packing_seq_len_multiplier=self.args.eval_batch_size,
                    device_count=int(os.environ.get("WORLD_SIZE", 1)),
                )
            )
        return super().get_eval_dataloader(eval_dataset)

    def compute_loss(self, model, inputs, return_outputs=False):
        # use one's weighted cross entropy loss calc
        # if self.args.sample_packing:
        #     labels = inputs.pop("labels")
        #     outputs = model(**inputs)
        #     loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
        #     return (loss, outputs) if return_outputs else loss
        return super().compute_loss(model, inputs, return_outputs=return_outputs)


class OneCycleLRSchedulerTrainer(AxolotlTrainer):
    """
    Trainer subclass that uses the OneCycleLR scheduler
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr_scheduler = None

    def create_scheduler(
        self,
        num_training_steps: int,
        optimizer: Optional[torch.optim.Optimizer] = None,
    ):
        optimizer = self.optimizer if optimizer is None else optimizer
        num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
        pct_start = num_warmup_steps / num_training_steps

        self.lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.args.learning_rate,
            total_steps=num_training_steps,
            pct_start=pct_start,
            div_factor=6,
        )

        return self.lr_scheduler


def add_position_ids(sample):
    sample["position_ids"] = torch.arange(len(sample["input_ids"]))
    return sample


def drop_long_seq(sample, sequence_len=2048):
    return len(sample["input_ids"]) <= sequence_len


@contextmanager
def disable_datasets_caching():
    try:
        set_caching_enabled(False)
        yield
    finally:
        set_caching_enabled(True)


def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
    drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
    train_dataset = train_dataset.filter(drop_long, num_proc=os.cpu_count())
    if eval_dataset:
        eval_dataset = eval_dataset.filter(drop_long, num_proc=os.cpu_count())

    if cfg.sample_packing:
        train_dataset = train_dataset.map(add_position_ids, num_proc=os.cpu_count())
        if eval_dataset:
            eval_dataset = eval_dataset.map(add_position_ids, num_proc=os.cpu_count())
    return train_dataset, eval_dataset


def calculate_total_num_steps(cfg, train_dataset, tokenizer):
    if cfg.sample_packing:
        # we have to drop anything longer then sequence len otherwise
        # flash attention with position ids fails
        if not cfg.total_num_tokens:
            LOG.info("calculating total_num_tokens")
            total_num_tokens = np.sum(
                train_dataset.data.column("input_ids")
                .to_pandas()
                .apply(lambda x: len(x))  # pylint: disable=unnecessary-lambda
                .values
            )
            LOG.info(f"πŸ“ UPDATE CONFIG WITH: `total_num_tokens: {total_num_tokens}`")
            cfg.total_num_tokens = total_num_tokens

        if cfg.sample_packing_eff_est:
            total_num_steps = (
                # match count to len est in dataloader
                (
                    math.floor(
                        0.99
                        * cfg.total_num_tokens
                        / cfg.sample_packing_eff_est
                        / cfg.sequence_len
                        // cfg.batch_size
                        // int(os.environ.get("WORLD_SIZE", 1))
                    )
                    - 1
                )
                * cfg.num_epochs
            )
            LOG.info(
                f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}"
            )
        else:
            sampler = RandomSampler(train_dataset)
            data_loader = MultipackDistributedDataloader(
                train_dataset,
                batch_size=cfg.micro_batch_size,
                seq_max_length=cfg.max_packed_sequence_len or cfg.sequence_len,
                collate_fn=DataCollatorForSeq2Seq(
                    tokenizer,
                    return_tensors="pt",
                    padding="longest",
                ),
                sampler=sampler,
                packing_efficiency_estimate=cfg.sample_packing_eff_est,
                sample_packing_seq_len_multiplier=cfg.micro_batch_size,
                device_count=int(os.environ.get("WORLD_SIZE", 1)),
            )
            data_loader_len = data_loader.len_w_stats()
            actual_eff = data_loader.efficiency()
            LOG.info(f"data_loader_len: {data_loader_len}")
            total_num_steps = int(
                math.floor(
                    data_loader_len
                    * cfg.micro_batch_size
                    * cfg.num_epochs
                    // cfg.batch_size
                )
            )
            LOG.info(
                f"πŸ“ UPDATE CONFIG WITH: `sample_packing_eff_est: {math.ceil(actual_eff * 100.0) / 100.0}`"
            )
            cfg.sample_packing_eff_est = math.ceil(actual_eff * 100.0) / 100.0
    else:
        total_num_steps = int(
            math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
        )
    LOG.info(f"total_num_steps: {total_num_steps}")
    return total_num_steps


def setup_fsdp_envs(cfg):
    os.environ["ACCELERATE_USE_FSDP"] = "true"
    if cfg.fsdp_config.fsdp_offload_params:
        os.environ["FSDP_OFFLOAD_PARAMS"] = "true"
    if cfg.fsdp_config.fsdp_sync_module_states:
        os.environ["FSDP_SYNC_MODULE_STATES"] = "true"
    if cfg.fsdp_config.fsdp_state_dict_type:
        os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
    if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap:
        os.environ[
            "FSDP_TRANSFORMER_CLS_TO_WRAP"
        ] = cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap


def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
    if cfg.fsdp:
        setup_fsdp_envs(cfg)
    elif cfg.deepspeed:
        os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"

    warmup_steps = (
        cfg.warmup_steps
        if cfg.warmup_steps is not None
        else min(int(0.03 * total_num_steps), 100)
    )
    logging_steps = (
        cfg.logging_steps
        if cfg.logging_steps is not None
        else max(min(int(0.005 * total_num_steps), 10), 1)
    )

    training_arguments_kwargs = {}
    if cfg.bf16 == "full":
        training_arguments_kwargs["bf16_full_eval"] = True
    else:
        training_arguments_kwargs["bf16"] = cfg.bf16
    training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
    training_arguments_kwargs["tf32"] = cfg.tf32
    training_arguments_kwargs["warmup_steps"] = warmup_steps
    training_arguments_kwargs["logging_steps"] = logging_steps

    if cfg.seed:
        training_arguments_kwargs["seed"] = cfg.seed

    if cfg.gradient_checkpointing:
        if cfg.gptq:
            from alpaca_lora_4bit.gradient_checkpointing import (
                apply_gradient_checkpointing,
            )

            gradient_checkpointing_ratio = (
                cfg.gradient_checkpointing_ratio
                if cfg.gradient_checkpointing_ratio
                else 1.0
            )
            apply_gradient_checkpointing(
                model, checkpoint_ratio=gradient_checkpointing_ratio
            )
        else:
            training_arguments_kwargs[
                "gradient_checkpointing"
            ] = cfg.gradient_checkpointing
    if cfg.fsdp:
        training_arguments_kwargs["fsdp"] = cfg.fsdp
        if cfg.fsdp_config:
            training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)

    # deepspeed
    if cfg.deepspeed:
        training_arguments_kwargs["deepspeed"] = cfg.deepspeed

    if cfg.lr_quadratic_warmup is not None:
        training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup

    if cfg.adam_beta1:
        training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1
    if cfg.adam_beta2:
        training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2
    if cfg.adam_epsilon:
        training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon
    if cfg.max_grad_norm:
        training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm

    if cfg.hub_model_id:
        training_arguments_kwargs["hub_model_id"] = cfg.hub_model_id
        training_arguments_kwargs["push_to_hub"] = True
        training_arguments_kwargs["hub_private_repo"] = True

        if cfg.hub_strategy:
            training_arguments_kwargs["hub_strategy"] = cfg.hub_strategy

    if cfg.save_safetensors:
        training_arguments_kwargs["save_safetensors"] = cfg.save_safetensors

    if cfg.sample_packing_eff_est:
        training_arguments_kwargs[
            "sample_packing_efficiency"
        ] = cfg.sample_packing_eff_est

    if cfg.val_set_size == 0:
        training_arguments_kwargs["evaluation_strategy"] = "no"
    elif cfg.eval_steps:
        training_arguments_kwargs["evaluation_strategy"] = "steps"
        training_arguments_kwargs["eval_steps"] = cfg.eval_steps
    else:
        # we have an eval set, but no steps defined, use epoch
        training_arguments_kwargs["evaluation_strategy"] = "epoch"

    if cfg.save_strategy:
        training_arguments_kwargs["save_strategy"] = cfg.save_strategy
    else:
        training_arguments_kwargs["save_strategy"] = (
            "steps" if cfg.save_steps else "epoch"
        )

    training_args = AxolotlTrainingArguments(  # pylint: disable=unexpected-keyword-arg
        max_steps=total_num_steps if cfg.max_steps else -1,
        max_seq_length=cfg.sequence_len,
        per_device_train_batch_size=cfg.micro_batch_size,
        per_device_eval_batch_size=cfg.eval_batch_size
        if cfg.eval_batch_size is not None
        else cfg.micro_batch_size,
        gradient_accumulation_steps=cfg.gradient_accumulation_steps,
        eval_accumulation_steps=cfg.gradient_accumulation_steps,
        num_train_epochs=cfg.num_epochs,
        learning_rate=cfg.learning_rate,
        save_steps=cfg.save_steps,
        output_dir=cfg.output_dir,
        save_total_limit=cfg.save_total_limit if cfg.save_total_limit else 4,
        load_best_model_at_end=(
            cfg.load_best_model_at_end is not False
            and cfg.val_set_size > 0
            and cfg.save_steps
            and cfg.save_steps % cfg.eval_steps == 0
            and cfg.load_in_8bit is not True
        )
        or False,
        ddp_find_unused_parameters=False if cfg.ddp else None,
        group_by_length=cfg.group_by_length,
        report_to="wandb" if cfg.use_wandb else None,
        run_name=cfg.wandb_run_id if cfg.use_wandb else None,
        optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
        lr_scheduler_type=cfg.lr_scheduler
        if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
        else "cosine",
        weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
        sample_packing=cfg.sample_packing if cfg.sample_packing else False,
        sample_packing_seq_len_multiplier=cfg.micro_batch_size,
        **training_arguments_kwargs,
    )

    trainer_kwargs = {}

    if cfg.optimizer == "adamw_anyprecision":
        if Path(cfg.torchdistx_path).exists():
            sys.path.append(cfg.torchdistx_path)
            importlib.import_module("torchdistx")
    if (
        cfg.optimizer == "adamw_bnb_8bit"
        and not cfg.gptq
        and "deepspeed" not in training_arguments_kwargs
        and not cfg.fsdp
    ):
        decay_parameters = get_parameter_names(model, [nn.LayerNorm])
        decay_parameters = [name for name in decay_parameters if "bias" not in name]
        optimizer_grouped_parameters = [
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if (n in decay_parameters and p.requires_grad)
                ],
                "weight_decay": training_args.weight_decay,
            },
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if (n not in decay_parameters and p.requires_grad)
                ],
                "weight_decay": 0.0,
            },
        ]

        optimizer = bnb.optim.Adam8bit(
            optimizer_grouped_parameters,
            betas=(training_args.adam_beta1, training_args.adam_beta2),
            eps=training_args.adam_epsilon,
            lr=training_args.learning_rate,
        )

        if cfg.lr_scheduler == "one_cycle":
            lr_scheduler_kwargs = (
                cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
            )
            lr_scheduler = OneCycleLR(
                optimizer,
                cfg.learning_rate,
                total_steps=total_num_steps,
                epochs=cfg.num_epochs,
                div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
                **lr_scheduler_kwargs,
            )
        elif cfg.lr_scheduler == "log_sweep":
            lr_scheduler = InterpolatingLogScheduler(
                optimizer,
                cfg.warmup_steps,
                cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
                cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
            )
        else:
            lr_scheduler = transformers.get_cosine_schedule_with_warmup(
                optimizer,
                training_args.warmup_steps,
                total_num_steps,
            )
        trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)

    callbacks = []
    callbacks.append(GPUStatsCallback(cfg))
    # TODO on_save callback to sync checkpoints to GCP/AWS in background
    if cfg.early_stopping_patience:
        early_stop_cb = EarlyStoppingCallback(
            cfg.early_stopping_patience,
        )
        callbacks.append(early_stop_cb)

    if cfg.local_rank == 0 and cfg.adapter in [
        "lora",
        "qlora",
    ]:  # only save in rank 0
        callbacks.append(SavePeftModelCallback)

    if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
        callbacks.append(SaveBetterTransformerModelCallback)

    data_collator_kwargs = {
        "padding": True,
    }
    if cfg.collator_pad_to_longest:
        data_collator_kwargs["padding"] = "longest"
    else:
        # A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
        # https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
        data_collator_kwargs["pad_to_multiple_of"] = 64

    if cfg.is_llama_derived_model and cfg.landmark_attention:
        from axolotl.monkeypatch.llama_landmark_attn import (
            add_mem_tokens,
            get_mem_id,
            set_model_mem_id,
        )

        set_model_mem_id(model, tokenizer)

        LOG.info("Adding landmark attention tokens to dataset")

        for dataset in [train_dataset, eval_dataset]:
            dataset = dataset.map(
                partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)),
                batched=False,
                num_proc=32,
            )

    trainer_cls = (
        OneCycleLRSchedulerTrainer
        if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora")
        else AxolotlTrainer
    )
    trainer = trainer_cls(
        model=model,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        args=training_args,
        data_collator=DataCollatorForSeq2Seq(
            tokenizer,
            return_tensors="pt",
            **data_collator_kwargs,
        ),
        callbacks=callbacks,
        **trainer_kwargs,
    )

    return trainer