qwerrwe / src /axolotl /utils /trainer.py
winglian's picture
push intermediate model checkpoints to hub
612aabd
raw
history blame
10.2 kB
"""Module containing the Trainer class and related functions"""
import importlib
import logging
import math
import os
import sys
from pathlib import Path
from typing import Optional
import bitsandbytes as bnb
import torch.cuda
import transformers
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from transformers import EarlyStoppingCallback, Trainer
from transformers.trainer_pt_utils import get_parameter_names
from axolotl.utils.callbacks import (
SaveBetterTransformerModelCallback,
SavePeftModelCallback,
)
from axolotl.utils.schedulers import InterpolatingLogScheduler
class OneCycleLRSchedulerTrainer(Trainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
pct_start = num_warmup_steps / num_training_steps
self.lr_scheduler = OneCycleLR(
optimizer,
max_lr=self.args.learning_rate,
total_steps=num_training_steps,
pct_start=pct_start,
div_factor=6,
)
return self.lr_scheduler
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
warmup_steps = (
cfg.warmup_steps
if cfg.warmup_steps is not None
else min(int(0.03 * total_num_steps), 100)
)
logging_steps = (
cfg.logging_steps
if cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
training_arguments_kwargs = {}
if cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
training_arguments_kwargs["tf32"] = cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if cfg.seed:
training_arguments_kwargs["seed"] = cfg.seed
if cfg.gradient_checkpointing:
if cfg.gptq:
from alpaca_lora_4bit.gradient_checkpointing import (
apply_gradient_checkpointing,
)
gradient_checkpointing_ratio = (
cfg.gradient_checkpointing_ratio
if cfg.gradient_checkpointing_ratio
else 1.0
)
apply_gradient_checkpointing(
model, checkpoint_ratio=gradient_checkpointing_ratio
)
else:
training_arguments_kwargs[
"gradient_checkpointing"
] = cfg.gradient_checkpointing
if cfg.fsdp:
training_arguments_kwargs["fsdp"] = cfg.fsdp
if cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
# deepspeed
if (
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
and torch.cuda.device_count() > 1
):
if cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
else:
# make a guess here
# TODO search Path("./") for one
training_arguments_kwargs["deepspeed"] = "./ds_config.json"
if cfg.adam_beta1:
training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1
if cfg.adam_beta2:
training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2
if cfg.adam_epsilon:
training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon
if cfg.max_grad_norm:
training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm
if cfg.push_to_hub_model_id:
training_arguments_kwargs["push_to_hub_model_id"] = cfg.push_to_hub_model_id
training_arguments_kwargs["push_to_hub"] = True
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size
if cfg.eval_batch_size is not None
else cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
eval_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps" if cfg.save_steps else "epoch",
eval_steps=cfg.eval_steps if cfg.val_set_size > 0 else None,
save_steps=cfg.save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=(
cfg.load_best_model_at_end is not False
and cfg.val_set_size > 0
and cfg.save_steps
and cfg.save_steps % cfg.eval_steps == 0
and cfg.load_in_8bit is not True
)
or False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
lr_scheduler_type=cfg.lr_scheduler
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
else "cosine",
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if cfg.optimizer == "adamw_anyprecision":
if Path(cfg.torchdistx_path).exists():
sys.path.append(cfg.torchdistx_path)
importlib.import_module("torchdistx")
if (
cfg.optimizer == "adamw_bnb_8bit"
and not cfg.gptq
and "deepspeed" not in training_arguments_kwargs
and not cfg.fsdp
):
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if (n in decay_parameters and p.requires_grad)
],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
if cfg.lr_scheduler == "one_cycle":
lr_scheduler_kwargs = (
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
)
lr_scheduler = OneCycleLR(
optimizer,
cfg.learning_rate,
total_steps=total_num_steps,
epochs=cfg.num_epochs,
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
**lr_scheduler_kwargs,
)
elif cfg.lr_scheduler == "log_sweep":
lr_scheduler = InterpolatingLogScheduler(
optimizer,
cfg.warmup_steps,
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
)
else:
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
optimizer,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
callbacks = []
# TODO on_save callback to sync checkpoints to GCP/AWS in background
if cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
cfg.early_stopping_patience,
)
callbacks.append(early_stop_cb)
if cfg.local_rank == 0 and cfg.adapter in [
"lora",
"qlora",
]: # only save in rank 0
callbacks.append(SavePeftModelCallback)
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
callbacks.append(SaveBetterTransformerModelCallback)
data_collator_kwargs = {
"padding": True,
}
if cfg.collator_pad_to_longest:
data_collator_kwargs["padding"] = "longest"
else:
data_collator_kwargs["pad_to_multiple_of"] = 8
if cfg.is_llama_derived_model and cfg.landmark_attention:
from functools import partial
from axolotl.monkeypatch.llama_landmark_attn import (
add_mem_tokens,
get_mem_id,
set_model_mem_id,
)
set_model_mem_id(model, tokenizer)
logging.info("Adding landmark attention tokens to dataset")
for dataset in [train_dataset, eval_dataset]:
dataset = dataset.map(
partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)),
batched=False,
num_proc=32,
)
trainer_cls = (
OneCycleLRSchedulerTrainer
if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora")
else transformers.Trainer
)
trainer = trainer_cls(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=callbacks,
**trainer_kwargs,
)
return trainer