# pylint: skip-file # coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LLaMA model. Taken from https://github.com/epfml/landmark-attention/blob/main/llama/llama_mem.py and modified. """ import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers import LlamaTokenizer from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import ( LLAMA_INPUTS_DOCSTRING, LLAMA_START_DOCSTRING, LlamaMLP, LlamaPreTrainedModel, LlamaRMSNorm, LlamaRotaryEmbedding, _expand_mask, _make_causal_mask, rotate_half, ) from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LlamaConfig" MEM_TOKEN = "" # nosec def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] if q is None: q_embed = None else: q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class LandmarkGroupedSoftmaxFunction(torch.autograd.Function): """ Landmark grouped softmax function. """ # Note that forward, setup_context, and backward are @staticmethods @staticmethod def forward(ctx, x, dim, mem_cnt, resp_mem_idx): new_shape = list(x.shape) new_shape[dim] = mem_cnt # max_mem_cnt.item() max_by_group = x.new_zeros((*new_shape,)) max_by_group.scatter_reduce_( src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False ) maxes = torch.gather(max_by_group, dim, resp_mem_idx) # x_exp = torch.exp(x - torch.where(torch.isinf(maxes), 0, maxes)) x_exp = torch.exp((x - maxes).to(torch.float32)) cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype) cumsum_by_group.scatter_add_( dim, resp_mem_idx, x_exp, ) denom = torch.gather(cumsum_by_group, dim, resp_mem_idx) # probs = torch.where(denom < 0.5, 0, x_exp / denom) probs = x_exp / denom ctx.mem_cnt = mem_cnt ctx.dim = dim ctx.save_for_backward(resp_mem_idx, probs) return probs @staticmethod def backward(ctx, grad_probs): mem_cnt = ctx.mem_cnt dim = ctx.dim resp_mem_idx, probs = ctx.saved_tensors grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]: grad_pair = grad_probs * probs new_shape = list(probs.shape) new_shape[dim] = mem_cnt # max_mem_cnt.item() cumsum_by_group = grad_pair.new_zeros((*new_shape,)) cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair) if ctx.needs_input_grad[0]: grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx) grad_x = grad_pair - probs * grad_sum assert not ctx.needs_input_grad[1] assert not ctx.needs_input_grad[2] assert not ctx.needs_input_grad[3] return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx def landmark_grouped_softmax(x, dim, is_mem, last_section_mask): last_and_rest_mask = last_section_mask # | mask full_access_mask = is_mem | last_and_rest_mask max_mem_cnt = 16 mem_group_idx = torch.cumsum(is_mem, dim=dim) mem_bucket_id = max_mem_cnt - 1 resp_mem_idx = torch.where( last_and_rest_mask, max_mem_cnt - 1, torch.where(is_mem, mem_bucket_id, mem_group_idx), ) probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx) new_shape = list(x.shape) new_shape[dim] = max_mem_cnt group_prob = probs.new_zeros((*new_shape,)) group_prob.scatter_( dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs ) probs = probs.mul( torch.where( full_access_mask, last_section_mask, torch.gather(group_prob, dim, resp_mem_idx), ) ) return probs class LlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: LlamaConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=False ) self.k_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=False ) self.v_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=False ) self.o_proj = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, bias=False ) self.rotary_emb = LlamaRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings ) self.mem_freq = None self.top_k = None self.max_cache_size = None def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): self.mem_freq = mem_freq self.top_k = top_k self.max_cache_size = max_cache_size def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, is_mem: Optional[torch.Tensor] = None, last_section_mask: Optional[torch.Tensor] = None, offload_cache_to_cpu: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = ( self.q_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) key_states = ( self.k_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if len(past_key_value) > 2: kv_seq_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) key_states_before_pos = key_states query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # [bsz, nh, t, hd] attn_prefix = None if past_key_value is not None: # reuse k, v, self_attention if self.mem_freq is None: cache_len = past_key_value[0].shape[2] if self.max_cache_size is not None: cache_len = min(cache_len, self.max_cache_size) if is_mem is not None: is_mem = torch.cat( (is_mem.new_zeros((1, 1, q_len, cache_len)), is_mem), dim=-1 ) last_section_mask = torch.cat( ( last_section_mask.new_ones((1, 1, q_len, cache_len)), last_section_mask, ), dim=-1, ) past_key_states = torch.cat([past_key_value[0], key_states], dim=2) past_value_states = torch.cat([past_key_value[1], value_states], dim=2) key_states = past_key_states[:, :, -(q_len + cache_len) :] value_states = past_value_states[:, :, -(q_len + cache_len) :] expected_att_size = (bsz, self.num_heads, q_len, cache_len + q_len) else: orig_value_states = value_states incomplete_len = past_key_value[0].shape[2] % (self.mem_freq + 1) full_len = past_key_value[0].shape[2] - incomplete_len past_key_mem, past_key_incomplete = torch.split( past_key_value[0], (full_len, incomplete_len), dim=2 ) past_value_mem, past_value_incomplete = torch.split( past_key_value[1], (full_len, incomplete_len), dim=2 ) if offload_cache_to_cpu: past_key_value = ( past_key_incomplete, past_value_incomplete, *past_key_value[2:], ) if incomplete_len > 0: assert q_len + incomplete_len <= (self.mem_freq + 1) is_mem = torch.cat( (is_mem.new_zeros((1, 1, q_len, incomplete_len)), is_mem), dim=-1 ) last_section_mask = torch.cat( ( last_section_mask.new_ones((1, 1, q_len, incomplete_len)), last_section_mask, ), dim=-1, ) if len(past_key_value) > 2: full_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] past_key_incomplete_pos = torch.arange( full_len, full_len + incomplete_len, dtype=torch.long, device=position_ids.device, ).unsqueeze(0) _, past_key_incomplete = apply_rotary_pos_emb( None, past_key_incomplete, cos, sin, past_key_incomplete_pos ) key_states = torch.cat((past_key_incomplete, key_states), dim=2) value_states = torch.cat((past_value_incomplete, value_states), dim=2) past_key_mem = past_key_mem.view( bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim ) past_value_mem = past_value_mem.view( bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim ) if len(past_key_value) > 2: mem_key_nopos = torch.cat( ( past_key_value[2], past_key_mem.select(dim=3, index=self.mem_freq), ), dim=2, ) past_key_mem_offload = past_key_value[3] past_key_mem = torch.cat( ( past_key_mem_offload, past_key_mem.to(past_key_mem_offload.device), ), dim=2, ) past_value_mem = torch.cat( ( past_key_value[4], past_value_mem.to(past_key_mem_offload.device), ), dim=2, ) else: mem_key_nopos = past_key_mem.select(dim=3, index=self.mem_freq) num_mems = past_key_mem.shape[2] top_k = min(self.top_k, num_mems) prefix_len = full_len - (top_k + 1) * (self.mem_freq + 1) mem_indices = torch.cat( ( position_ids.new_zeros((max(0, num_mems - top_k),)), torch.arange( 1, top_k + 1, device=query_states.device, dtype=position_ids.dtype, ), ), dim=0, ) mem_pos = (mem_indices * (self.mem_freq + 1) + self.mem_freq).unsqueeze( 0 ).expand(bsz, -1) + prefix_len _, mem_key = apply_rotary_pos_emb( None, mem_key_nopos, cos, sin, mem_pos ) mem_attn_weights = torch.matmul( query_states, mem_key.transpose(2, 3) ) / math.sqrt(self.head_dim) if offload_cache_to_cpu: aggregate = "max_over_tokens" else: aggregate = None if aggregate == "max_over_tokens": token_retrievers = 1 head_retrievers = self.num_heads mem_attn_weights = torch.nn.functional.softmax( mem_attn_weights, dim=-1 ) mem_attn_weights = mem_attn_weights.amax(dim=2, keepdim=True) elif aggregate is None: token_retrievers = q_len head_retrievers = self.num_heads else: raise NotImplementedError() mem_selected_idx = ( mem_attn_weights.topk(dim=-1, k=top_k)[1] .sort(dim=-1)[0] .view(bsz, head_retrievers, token_retrievers, top_k) ) selected_indices = torch.arange( 0, top_k * (self.mem_freq + 1), device=query_states.device, dtype=position_ids.dtype, ) selected_indices = torch.where( mem_selected_idx >= num_mems - top_k, self.mem_freq + 1, 0 ).unsqueeze(-1) + selected_indices.view( 1, 1, 1, top_k, self.mem_freq + 1 ) selected_indices = ( selected_indices.view( bsz, head_retrievers, token_retrievers, -1 ).expand(bsz, self.num_heads, q_len, -1) + prefix_len ) mem_selected_idx = mem_selected_idx.to(past_key_mem.device) mem_selected_idx = mem_selected_idx.view( bsz, self.num_heads, token_retrievers, top_k, 1, 1 ).expand( bsz, self.num_heads, token_retrievers, top_k, self.mem_freq + 1, self.head_dim, ) selected_keys = past_key_mem.unsqueeze(2).expand( bsz, self.num_heads, token_retrievers, -1, self.mem_freq + 1, self.head_dim, ) selected_keys = selected_keys.take_along_dim( mem_selected_idx, dim=3 ).to(query_states.device) selected_values = ( past_value_mem.unsqueeze(2) .expand( bsz, self.num_heads, token_retrievers, -1, self.mem_freq + 1, self.head_dim, ) .take_along_dim(mem_selected_idx, dim=3) .to(query_states.device) ) selected_keys = selected_keys.view( bsz, self.num_heads, token_retrievers, -1, self.head_dim ).expand(bsz, self.num_heads, q_len, -1, self.head_dim) selected_keys = apply_rotary_pos_emb( None, selected_keys.unsqueeze(1), cos, sin, selected_indices )[1].squeeze(1) selected_values = selected_values.view( bsz, self.num_heads, token_retrievers, -1, self.head_dim ).expand(bsz, self.num_heads, q_len, -1, self.head_dim) attn_prefix = torch.matmul( query_states.unsqueeze(3), selected_keys.transpose(3, 4) ).squeeze(3) / math.sqrt(self.head_dim) is_mem_prefix = ( torch.cat( (is_mem.new_zeros((self.mem_freq,)), is_mem.new_ones((1,))) ) .unsqueeze(0) .repeat((top_k, 1)) ) is_mem_prefix = is_mem_prefix.view(1, 1, 1, -1).expand(1, 1, q_len, -1) is_mem = torch.cat((is_mem_prefix, is_mem), dim=-1) last_section_mask = torch.cat( ( last_section_mask.new_zeros( (1, 1, q_len, top_k * (self.mem_freq + 1)) ), last_section_mask, ), dim=-1, ) expected_att_size = (bsz, self.num_heads, q_len, q_len + incomplete_len) past_key_states = torch.cat( [past_key_value[0], key_states_before_pos], dim=2 ) past_value_states = torch.cat( [past_key_value[1], orig_value_states], dim=2 ) if offload_cache_to_cpu: past_key_value = ( ( past_key_states, past_value_states, mem_key_nopos, past_key_mem.to("cpu"), past_value_mem.to("cpu"), *past_key_value[5:], ) if use_cache else None ) else: past_key_value = ( (past_key_states, past_value_states) if use_cache else None ) else: if self.mem_freq is None: past_key_states = key_states else: past_key_states = key_states_before_pos past_value_states = value_states expected_att_size = (bsz, self.num_heads, q_len, kv_seq_len) past_key_value = (past_key_states, past_value_states) if use_cache else None attn_weights = torch.matmul( query_states, key_states.transpose(2, 3) ) / math.sqrt(self.head_dim) if attn_weights.size() != expected_att_size: raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask[..., -attn_weights.shape[-1] :] attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) ) if attn_prefix is not None: attn_weights = torch.cat((attn_prefix, attn_weights), dim=-1) # upcast attention to fp32 if is_mem is None: raise ValueError("Don't use this without landmarks") attn_weights = landmark_grouped_softmax( attn_weights, dim=-1, is_mem=is_mem.expand(-1, self.num_heads, -1, -1), last_section_mask=last_section_mask, ).to(query_states.dtype) if attn_prefix is not None: attn_prefix, attn_weights = torch.split( attn_weights, (attn_prefix.shape[-1], attn_weights.shape[-1] - attn_prefix.shape[-1]), dim=-1, ) attn_output = torch.matmul(attn_weights, value_states) if attn_prefix is not None: attn_output += torch.matmul( attn_prefix.unsqueeze(3), selected_values ).squeeze(3) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class LlamaDecoderLayer(nn.Module): """ Llama Decoder layer """ def __init__(self, config: LlamaConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LlamaAttention(config=config) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): self.self_attn.set_mem_cache_args(mem_freq, top_k, max_cache_size) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, is_mem: Optional[torch.Tensor] = None, last_section_mask: Optional[torch.Tensor] = None, offload_cache_to_cpu: bool = False, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, is_mem=is_mem, last_section_mask=last_section_mask, offload_cache_to_cpu=offload_cache_to_cpu, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class LlamaModel(LlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] Args: config: LlamaConfig """ def __init__(self, config: LlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding( config.vocab_size, config.hidden_size, self.padding_idx ) self.layers = nn.ModuleList( [LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mem_id = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def set_mem_id(self, mem_id): self.mem_id = mem_id def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): for layer in self.layers: layer.set_mem_cache_args(mem_freq, top_k, max_cache_size) # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, offload_cache_to_cpu: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds is_mem = None if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape if self.mem_id is not None: with torch.no_grad(): is_mem = input_ids == self.mem_id elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape if self.mem_id is not None: raise NotImplementedError else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: if is_mem is not None: pass # raise NotImplementedError past_key_values_length = past_key_values[0][0].shape[2] if len(past_key_values[0]) > 2: past_key_values_length += ( past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3] ) seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) last_section_mask = None if is_mem is not None: is_mem = is_mem.unsqueeze(1).unsqueeze(2) current_len = input_ids.shape[1] mem_ids = torch.where( attention_mask[..., -current_len:] < -1, 0, torch.cumsum(is_mem, -1) - is_mem.int(), ) last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids attention_mask[..., -current_len:].masked_fill_( last_section_mask & is_mem, torch.tensor( torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device ), ) last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1) is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, None, output_attentions, None, is_mem, last_section_mask, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, is_mem=is_mem, last_section_mask=last_section_mask, offload_cache_to_cpu=offload_cache_to_cpu, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class LlamaForCausalLM(LlamaPreTrainedModel): """ Llama model with a causal language modeling head. """ def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.mem_id = None self.mem_freq = None self.top_k = None self.max_seq_len = None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, offload_cache_to_cpu: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) window_len = self.max_seq_len or input_ids.shape[1] last_logits = None for _, idx in enumerate(range(0, input_ids.shape[1], window_len)): if idx >= 1: if output_attentions or output_hidden_states: raise NotImplementedError if not use_cache: raise NotImplementedError outputs = self.model( input_ids=input_ids[:, idx : idx + window_len], attention_mask=attention_mask[ :, : idx + window_len + attention_mask.shape[1] - input_ids.shape[1] ] if attention_mask is not None else None, position_ids=position_ids[:, idx : idx + window_len] if position_ids is not None else None, past_key_values=past_key_values, inputs_embeds=inputs_embeds[:, idx : idx + window_len] if inputs_embeds is not None else None, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, offload_cache_to_cpu=offload_cache_to_cpu, ) past_key_values = outputs.past_key_values if last_logits is not None: last_logits = torch.cat((last_logits, outputs[0]), dim=-2) last_logits = outputs[0] hidden_states = last_logits logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def set_mem_id(self, mem_id): self.mem_id = mem_id self.model.set_mem_id(mem_id) def set_mem_cache_args(self, max_seq_len, mem_freq, top_k, max_cache_size): self.mem_freq = mem_freq self.top_k = top_k self.max_seq_len = max_seq_len if self.max_seq_len is not None: assert self.max_seq_len % (self.mem_freq + 1) == 0 self.model.set_mem_cache_args(mem_freq, top_k, max_cache_size) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): total_len = input_ids.shape[1] if past_key_values: prev_len = input_ids.shape[1] - 1 else: prev_len = 0 position_ids = kwargs.get("position_ids", None) if self.mem_freq is not None: if position_ids is not None: raise NotImplementedError # T = input_ids.shape[1] prev_incomplete_len = prev_len % self.mem_freq prev_complete_len = prev_len - prev_incomplete_len incomplete_len = total_len % self.mem_freq new_full_len = total_len - prev_complete_len - incomplete_len prev_input, input_ids_with_mem, input_ids_without_mem = torch.split( input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1 ) bsz, _ = input_ids.size() input_ids_with_mem = input_ids_with_mem.view(bsz, -1, self.mem_freq) input_ids_with_mem = torch.cat( ( input_ids_with_mem, input_ids_with_mem.new_full( (bsz, input_ids_with_mem.shape[1], 1), self.mem_id ), ), dim=-1, ).view(bsz, -1) input_ids = torch.cat( (prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1 ) if attention_mask is not None: attention_mask_with_mem, attention_mask_without_mem = torch.split( attention_mask, (prev_complete_len + new_full_len, incomplete_len), dim=-1, ) attention_mask_with_mem = attention_mask_with_mem.view( bsz, -1, self.mem_freq ) attention_mask_with_mem = torch.cat( ( attention_mask_with_mem, attention_mask_with_mem.new_ones( (bsz, attention_mask_with_mem.shape[1], 1) ), ), dim=-1, ).view(bsz, -1) attention_mask = torch.cat( (attention_mask_with_mem, attention_mask_without_mem), dim=-1 ) input_ids = input_ids[:, prev_len:] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids[:, -input_ids.shape[1] :].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if ( inputs_embeds is not None and past_key_values is None and self.mem_freq is None ): model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu"), } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past ), ) return reordered_past def add_mem_tokens(example, mem_freq, mem_id): ids = example["input_ids"] ret = [] prev_idx = 0 for t_idx in range(mem_freq, len(ids), mem_freq): ret.extend(ids[prev_idx:t_idx]) ret.append(mem_id) prev_idx = t_idx ret.extend(ids[prev_idx:]) # drop attention_mask return {"input_ids": ret} def patch_llama_with_landmark_attn(): import transformers transformers.models.llama.modeling_llama.LlamaForCausalLM = LlamaForCausalLM transformers.models.llama.modeling_llama.LlamaModel = LlamaModel transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb def set_model_mem_id(model: LlamaForCausalLM, tokenizer: LlamaTokenizer): mem_id = tokenizer.convert_tokens_to_ids(MEM_TOKEN) model.set_mem_id(mem_id) def get_mem_id(tokenizer: LlamaTokenizer): return tokenizer.convert_tokens_to_ids(MEM_TOKEN)