"""Module for models and model loading""" import logging import math import os from pathlib import Path from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401 import bitsandbytes as bnb import torch import transformers from optimum.bettertransformer import BetterTransformer from transformers import ( # noqa: F401 AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, LlamaConfig, PreTrainedModel, PreTrainedTokenizerBase, ) from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN LOG = logging.getLogger("axolotl") if TYPE_CHECKING: from peft import PeftConfig # noqa: F401 from axolotl.utils.dict import DictDefault # noqa: F401 def load_tokenizer( tokenizer_config, tokenizer_type, cfg, ): use_fast = True # this is the default if cfg.tokenizer_use_fast is not None: use_fast = cfg.tokenizer_use_fast if tokenizer_type: tokenizer = getattr(transformers, tokenizer_type).from_pretrained( tokenizer_config, trust_remote_code=cfg.trust_remote_code or False, use_fast=use_fast, ) else: tokenizer = AutoTokenizer.from_pretrained( tokenizer_config, trust_remote_code=cfg.trust_remote_code or False, use_fast=use_fast, ) LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}") LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}") LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}") LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}") if tokenizer.__class__.__name__ in [ "LlamaTokenizer", "LlamaTokenizerFast", ]: tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast": tokenizer.add_special_tokens({"pad_token": "[PAD]"}) os.environ["TOKENIZERS_PARALLELISM"] = "false" if cfg.special_tokens: for k, val in cfg.special_tokens.items(): tokenizer.add_special_tokens({k: val}) if cfg.tokens: tokenizer.add_tokens(list(cfg.tokens)) return tokenizer def load_model( base_model, base_model_config, model_type, tokenizer, cfg, adapter="lora" ): # type: (str, str, str, PreTrainedTokenizerBase, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]] """ Load a model from a base model and a model type. """ # TODO refactor as a kwarg load_in_8bit = cfg.load_in_8bit cfg.is_llama_derived_model = "llama" in base_model or ( cfg.model_type and "llama" in cfg.model_type.lower() ) if cfg.is_llama_derived_model and cfg.flash_attention: if cfg.device not in ["mps", "cpu"] and not cfg.inference: from axolotl.flash_attn import replace_llama_attn_with_flash_attn LOG.info("patching with flash attention") replace_llama_attn_with_flash_attn() elif cfg.is_llama_derived_model and cfg.xformers_attention: from axolotl.monkeypatch.llama_attn_hijack_xformers import ( hijack_llama_attention, ) LOG.info("patching with xformers attention") hijack_llama_attention() elif cfg.is_llama_derived_model and cfg.sdp_attention: from axolotl.monkeypatch.llama_attn_hijack_xformers import ( hijack_llama_sdp_attention, ) LOG.info("patching with sdp attention") hijack_llama_sdp_attention() elif cfg.is_llama_derived_model and cfg.landmark_attention: from axolotl.monkeypatch.llama_landmark_attn import ( MEM_TOKEN, patch_llama_with_landmark_attn, ) LOG.info("patching with landmark attention") patch_llama_with_landmark_attn() # Note: This might overwrite previous additional_special_tokens tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]}) if cfg.is_llama_derived_model and cfg.xpos_rope: from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import ( replace_llama_rope_with_xpos_rope, ) LOG.info("patching with xpos rope") replace_llama_rope_with_xpos_rope() if cfg.bf16 or cfg.bfloat16: torch_dtype = torch.bfloat16 elif cfg.load_in_8bit or cfg.fp16 or cfg.float16: torch_dtype = torch.float16 else: torch_dtype = torch.float32 try: if cfg.gptq: from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import ( replace_peft_model_with_int4_lora_model, ) replace_peft_model_with_int4_lora_model() except Exception as err: LOG.exception(err) raise err try: from peft import prepare_model_for_kbit_training except ImportError: # For backward compatibility from peft import ( prepare_model_for_int8_training as prepare_model_for_kbit_training, ) model_kwargs = {} if cfg.model_revision: model_kwargs["revision"] = cfg.model_revision if cfg.adapter == "qlora" and cfg.load_in_4bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) try: if cfg.gptq and cfg.is_llama_derived_model: from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram from huggingface_hub import snapshot_download try: snapshot_download_kwargs = {} if cfg.base_model_ignore_patterns: snapshot_download_kwargs[ "ignore_patterns" ] = cfg.base_model_ignore_patterns cache_model_path = Path( snapshot_download(base_model, **snapshot_download_kwargs) ) files = ( list(cache_model_path.glob("*.pt")) + list(cache_model_path.glob("*.safetensors")) + list(cache_model_path.glob("*.bin")) ) if len(files) > 0: model_path = str(files[0]) else: LOG.warning( "unable to find a cached model file, this will likely fail..." ) model_path = str(cache_model_path) except Exception: # pylint: disable=broad-exception-caught model_path = cfg.base_model model, _ = load_llama_model_4bit_low_ram( base_model_config if base_model_config else base_model, model_path, device_map=cfg.device_map, half=cfg.fp16, groupsize=cfg.gptq_groupsize if cfg.gptq_groupsize else -1, is_v1_model=cfg.gptq_model_v1 if cfg.gptq_model_v1 is not None else True, ) load_in_8bit = False elif cfg.is_llama_derived_model and not cfg.trust_remote_code: from transformers import LlamaForCausalLM config = LlamaConfig.from_pretrained(base_model_config) model = LlamaForCausalLM.from_pretrained( base_model, config=config, load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None, load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None, torch_dtype=torch_dtype, device_map="auto" if cfg.world_size == 1 else cfg.device_map, **model_kwargs, ) # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention: # This is a WIP, still an issue with the backward pass # RuntimeError: grad can be implicitly created only for scalar outputs # TODO: try config.sequence_parallel = False # # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12 # # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components # # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442 # from flash_attn.utils.pretrained import state_dict_from_pretrained # from flash_attn.models.gpt import GPTLMHeadModel # from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config # from transformers import GPTNeoXConfig # config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model)) # config.use_flash_attn = True # config.fused_bias_fc = True # config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast" # config.activation_function = "gelu_fast" # config.fused_dropout_add_ln = True # # config.residual_in_fp32 = True # # model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained( # base_model, # config, # dtype=torch_dtype, # device=cfg.device, # ) # model.train() # sets to train instead of eval mode elif model_type and not cfg.trust_remote_code: model = getattr(transformers, model_type).from_pretrained( base_model, load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None, load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None, torch_dtype=torch_dtype, device_map=cfg.device_map, trust_remote_code=cfg.trust_remote_code or False, **model_kwargs, ) else: config = AutoConfig.from_pretrained( base_model, trust_remote_code=cfg.trust_remote_code or False, ) # Shouldn't be a problem most of the time. will obviously error if the model doesn't support this # when training starts if ( hasattr(config, "max_seq_len") and config.max_seq_len and cfg.sequence_len > config.max_seq_len ): config.max_seq_len = cfg.sequence_len LOG.warning(f"increasing context length to {cfg.sequence_len}") elif ( hasattr(config, "max_sequence_length") and config.max_sequence_length and cfg.sequence_len > config.max_sequence_length ): config.max_sequence_length = cfg.sequence_len LOG.warning(f"increasing context length to {cfg.sequence_len}") model = AutoModelForCausalLM.from_pretrained( base_model, config=config, load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None, load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None, torch_dtype=torch_dtype, device_map=cfg.device_map, trust_remote_code=cfg.trust_remote_code or False, **model_kwargs, ) except Exception as err: # pylint: disable=broad-exception-caught LOG.error( "Exception raised attempting to load model, retrying with AutoModelForCausalLM" ) LOG.exception(err) model = AutoModelForCausalLM.from_pretrained( base_model, load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None, load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None, torch_dtype=torch_dtype, device_map=cfg.device_map, trust_remote_code=cfg.trust_remote_code or False, **model_kwargs, ) embeddings_len = ( math.ceil(len(tokenizer) / 32) * 32 if cfg.resize_token_embeddings_to_32x else len(tokenizer) ) model.resize_token_embeddings(embeddings_len) if ( hasattr(model.config, "max_position_embeddings") and model.config.max_position_embeddings and cfg.sequence_len >= model.config.max_position_embeddings ): LOG.warning( f"increasing model.config.max_position_embeddings to {cfg.sequence_len}" ) model.config.max_position_embeddings = cfg.sequence_len if not cfg.gptq and ( (cfg.adapter == "lora" and load_in_8bit) or (cfg.adapter == "qlora" and cfg.load_in_4bit) ): LOG.info("converting PEFT model w/ prepare_model_for_kbit_training") model = prepare_model_for_kbit_training( model, use_gradient_checkpointing=cfg.gradient_checkpointing ) model, lora_config = load_adapter(model, cfg, adapter) if cfg.ddp and not load_in_8bit: model.to(f"cuda:{cfg.local_rank}") if cfg.gptq: # Scales to half LOG.info("Fitting 4bit scales and zeros to half") for _, module in model.named_modules(): if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str( type(module) ): if hasattr(module, "is_v1_model") and module.is_v1_model: module.zeros = module.zeros.half() module.scales = module.scales.half() module.bias = module.bias.half() if ( torch.cuda.device_count() > 1 and int(os.getenv("WORLD_SIZE", "1")) > 1 and (cfg.gptq or cfg.load_in_4bit) ): # llama is PROBABLY model parallelizable, but the default isn't that it is # so let's only set it for the 4bit, see # https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133 setattr(model, "is_parallelizable", True) setattr(model, "model_parallel", True) requires_grad = [] for name, param in model.named_parameters(recurse=True): if param.requires_grad: requires_grad.append(f"{name}: {param.requires_grad}") if len(requires_grad) == 0: LOG.warning("there are no parameters that require gradient updates") model.config.use_cache = False if cfg.flash_optimum: model = BetterTransformer.transform(model) # TODO resume_from_checkpoint handling return model, lora_config def load_adapter(model, cfg, adapter): # type: (PreTrainedModel, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]] if adapter is None: return model, None if adapter in ["lora", "qlora"]: return load_lora(model, cfg) if adapter == "llama-adapter": return load_llama_adapter(model, cfg) raise NotImplementedError(f"{adapter} peft adapter not available") def load_llama_adapter(model, cfg): # type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]] from peft import AdaptionPromptConfig, PeftModel, get_peft_model peft_config = AdaptionPromptConfig( adapter_layers=cfg.peft_adapter.layers, # layers (L) adapter_len=cfg.peft_adapter.len, # prompt length (K) task_type="CAUSAL_LM", ) if cfg.lora_model_dir: LOG.info("Loading pretained LORA") model = PeftModel.from_pretrained( model, cfg.lora_model_dir, torch_dtype=torch.float16, ) else: model = get_peft_model(model, peft_config) model.print_trainable_parameters() return model, peft_config def find_all_linear_names(bits, model): cls = ( bnb.nn.Linear4bit if bits == 4 else (bnb.nn.Linear8bitLt if bits == 8 else torch.nn.Linear) ) lora_module_names = set() for name, module in model.named_modules(): if isinstance(module, cls): names = name.split(".") lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if "lm_head" in lora_module_names: # needed for 16-bit lora_module_names.remove("lm_head") return list(lora_module_names) def load_lora(model, cfg): # type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]] from peft import LoraConfig, PeftModel, get_peft_model lora_target_modules = list(cfg.lora_target_modules or []) if cfg.lora_target_linear: bits = None if cfg.load_in_4bit: bits = 4 elif cfg.load_in_8bit: bits = 8 linear_names = find_all_linear_names(bits, model) LOG.info(f"found linear modules: {repr(linear_names)}") lora_target_modules = list(set(lora_target_modules + linear_names)) lora_config = LoraConfig( r=cfg.lora_r, lora_alpha=cfg.lora_alpha, target_modules=lora_target_modules, lora_dropout=cfg.lora_dropout, fan_in_fan_out=cfg.lora_fan_in_fan_out, modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None, bias="none", task_type="CAUSAL_LM", ) if cfg.lora_model_dir: model = PeftModel.from_pretrained( model, cfg.lora_model_dir, is_trainable=not cfg.inference, ) else: model = get_peft_model(model, lora_config) model.print_trainable_parameters() return model, lora_config