Xp-age / lib /dataloader.py
MedicalAILabo's picture
Upload app.py and lib.
1f53a4c
raw
history blame
No virus
12.9 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from PIL import Image
from sklearn.preprocessing import MinMaxScaler
import pickle
from .logger import BaseLogger
from typing import List, Dict, Union
import pandas as pd
logger = BaseLogger.get_logger(__name__)
class PrivateAugment(torch.nn.Module):
"""
Augmentation defined privately.
Variety of augmentation can be written in this class if necessary.
"""
# For X-ray photo.
xray_augs_list = [
transforms.RandomAffine(degrees=(-3, 3), translate=(0.02, 0.02)),
transforms.RandomAdjustSharpness(sharpness_factor=2),
transforms.RandomAutocontrast()
]
class InputDataMixin:
"""
Class to normalizes input data.
"""
def _make_scaler(self) -> MinMaxScaler:
"""
Make scaler to normalize input data by min-max normalization with train data.
Returns:
MinMaxScaler: scaler
"""
scaler = MinMaxScaler()
_df_train = self.df_source[self.df_source['split'] == 'train'] # should be normalized with min and max of training data
_ = scaler.fit(_df_train[self.input_list]) # fit only
return scaler
def save_scaler(self, save_path :str) -> None:
"""
Save scaler
Args:
save_path (str): path for saving scaler.
"""
#save_scaler_path = Path(save_datetime_dir, 'scaler.pkl')
with open(save_path, 'wb') as f:
pickle.dump(self.scaler, f)
def load_scaler(self, scaler_path :str) -> None:
"""
Load scaler.
Args:
scaler_path (str): path to scaler
"""
with open(scaler_path, 'rb') as f:
scaler = pickle.load(f)
return scaler
def _normalize_inputs(self, df_inputs: pd.DataFrame) -> torch.FloatTensor:
"""
Normalize inputs.
Args:
df_inputs (pd.DataFrame): DataFrame of inputs
Returns:
torch.FloatTensor: normalized inputs
Note:
After iloc[[idx], index_input_list], pd.DataFrame is obtained.
DataFrame fits the input type of self.scaler.transform.
However, after normalizing, the shape of inputs_value is (1, N), where N is the number of input values.
Since the shape (1, N) is not acceptable when forwarding, convert (1, N) -> (N,) is needed.
"""
inputs_value = self.scaler.transform(df_inputs).reshape(-1) # np.float64
inputs_value = np.array(inputs_value, dtype=np.float32) # -> np.float32
inputs_value = torch.from_numpy(inputs_value).clone() # -> torch.float32
return inputs_value
def _load_input_value_if_mlp(self, idx: int) -> Union[torch.FloatTensor, str]:
"""
Load input values after converting them into tensor if MLP is used.
Args:
idx (int): index
Returns:
Union[torch.Tensor[float], str]: tensor of input values, or empty string
"""
inputs_value = ''
if self.params.mlp is None:
return inputs_value
index_input_list = [self.col_index_dict[input] for input in self.input_list]
_df_inputs = self.df_split.iloc[[idx], index_input_list]
inputs_value = self._normalize_inputs( _df_inputs)
return inputs_value
class ImageMixin:
"""
Class to normalize and transform image.
"""
def _make_augmentations(self) -> List:
"""
Define which augmentation is applied.
When training, augmentation is needed for train data only.
When test, no need of augmentation.
"""
_augmentation = []
if (self.params.isTrain) and (self.split == 'train'):
if self.params.augmentation == 'xrayaug':
_augmentation = PrivateAugment.xray_augs_list
elif self.params.augmentation == 'trivialaugwide':
_augmentation.append(transforms.TrivialAugmentWide())
elif self.params.augmentation == 'randaug':
_augmentation.append(transforms.RandAugment())
else:
# ie. self.params.augmentation == 'no':
pass
_augmentation = transforms.Compose(_augmentation)
return _augmentation
def _make_transforms(self) -> List:
"""
Make list of transforms.
Returns:
list of transforms: image normalization
"""
_transforms = []
_transforms.append(transforms.ToTensor())
if self.params.normalize_image == 'yes':
# transforms.Normalize accepts only Tensor.
if self.params.in_channel == 1:
_transforms.append(transforms.Normalize(mean=(0.5, ), std=(0.5, )))
else:
# ie. self.params.in_channel == 3
_transforms.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
_transforms = transforms.Compose(_transforms)
return _transforms
def _open_image_in_channel(self, imgpath: str, in_channel: int) -> Image:
"""
Open image in channel.
Args:
imgpath (str): path to image
in_channel (int): channel, or 1 or 3
Returns:
Image: PIL image
"""
if in_channel == 1:
image = Image.open(imgpath).convert('L') # eg. np.array(image).shape = (64, 64)
return image
else:
# ie. self.params.in_channel == 3
image = Image.open(imgpath).convert('RGB') # eg. np.array(image).shape = (64, 64, 3)
return image
def _load_image_if_cnn(self, idx: int) -> Union[torch.Tensor, str]:
"""
Load image and convert it to tensor if any of CNN or ViT is used.
Args:
idx (int): index
Returns:
Union[torch.Tensor[float], str]: tensor converted from image, or empty string
"""
image = ''
if self.params.net is None:
return image
imgpath = self.df_split.iat[idx, self.col_index_dict['imgpath']]
image = self._open_image_in_channel(imgpath, self.params.in_channel)
image = self.augmentation(image)
image = self.transform(image)
return image
class DeepSurvMixin:
"""
Class to handle required data for deepsurv.
"""
def _load_periods_if_deepsurv(self, idx: int) -> Union[torch.FloatTensor, str]:
"""
Return period if deepsurv.
Args:
idx (int): index
Returns:
Union[torch.FloatTensor, str]: period, or empty string
"""
periods = ''
if self.params.task != 'deepsurv':
return periods
assert (self.params.task == 'deepsurv') and (len(self.label_list) == 1), 'Deepsurv cannot work in multi-label.'
periods = self.df_split.iat[idx, self.col_index_dict[self.period_name]] # int64
periods = np.array(periods, dtype=np.float32) # -> np.float32
periods = torch.from_numpy(periods).clone() # -> torch.float32
return periods
class DataSetWidget(InputDataMixin, ImageMixin, DeepSurvMixin):
"""
Class for a widget to inherit multiple classes simultaneously.
"""
pass
class LoadDataSet(Dataset, DataSetWidget):
"""
Dataset for split.
"""
def __init__(
self,
params,
split: str
) -> None:
"""
Args:
params (ParamSet): parameter for model
split (str): split
"""
self.params = params
self.df_source = self.params.df_source
self.split = split
self.input_list = self.params.input_list
self.label_list = self.params.label_list
if self.params.task == 'deepsurv':
self.period_name = self.params.period_name
self.df_split = self.df_source[self.df_source['split'] == self.split]
self.col_index_dict = {col_name: self.df_split.columns.get_loc(col_name) for col_name in self.df_split.columns}
# For input data
if self.params.mlp is not None:
assert (self.input_list != []), f"input list is empty."
if params.isTrain:
self.scaler = self._make_scaler()
else:
# load scaler used at training.
self.scaler = self.load_scaler(self.params.scaler_path)
# For image
if self.params.net is not None:
self.augmentation = self._make_augmentations()
self.transform = self._make_transforms()
def __len__(self) -> int:
"""
Return length of DataFrame.
Returns:
int: length of DataFrame
"""
return len(self.df_split)
def _load_label(self, idx: int) -> Dict[str, Union[int, float]]:
"""
Return labels.
If no column of label when csv of external dataset is used,
empty dictionary is returned.
Args:
idx (int): index
Returns:
Dict[str, Union[int, float]]: dictionary of label name and its value
"""
# For checking if columns of labels exist when used csv for external dataset.
label_list_in_split = list(self.df_split.columns[self.df_split.columns.str.startswith('label')])
label_dict = dict()
if label_list_in_split != []:
for label_name in self.label_list:
label_dict[label_name] = self.df_split.iat[idx, self.col_index_dict[label_name]]
else:
# no label
pass
return label_dict
def __getitem__(self, idx: int) -> Dict:
"""
Return data row specified by index.
Args:
idx (int): index
Returns:
Dict: dictionary of data to be passed model
"""
uniqID = self.df_split.iat[idx, self.col_index_dict['uniqID']]
group = self.df_split.iat[idx, self.col_index_dict['group']]
imgpath = self.df_split.iat[idx, self.col_index_dict['imgpath']]
split = self.df_split.iat[idx, self.col_index_dict['split']]
inputs_value = self._load_input_value_if_mlp(idx)
image = self._load_image_if_cnn(idx)
label_dict = self._load_label(idx)
periods = self._load_periods_if_deepsurv(idx)
_data = {
'uniqID': uniqID,
'group': group,
'imgpath': imgpath,
'split': split,
'inputs': inputs_value,
'image': image,
'labels': label_dict,
'periods': periods
}
return _data
def _make_sampler(split_data: LoadDataSet) -> WeightedRandomSampler:
"""
Make sampler.
Args:
split_data (LoadDataSet): dataset
Returns:
WeightedRandomSampler: sampler
"""
_target = []
for _, data in enumerate(split_data):
_target.append(list(data['labels'].values())[0])
class_sample_count = np.array([len(np.where(_target == t)[0]) for t in np.unique(_target)])
weight = 1. / class_sample_count
samples_weight = np.array([weight[t] for t in _target])
sampler = WeightedRandomSampler(samples_weight, len(samples_weight))
return sampler
def create_dataloader(
params,
split: str = None
) -> DataLoader:
"""
Create data loader ofr split.
Args:
params (ParamSet): parameter for dataloader
split (str): split. Defaults to None.
Returns:
DataLoader: data loader
"""
split_data = LoadDataSet(params, split)
if params.isTrain:
batch_size = params.batch_size
shuffle = True
else:
batch_size = params.test_batch_size
shuffle = False
if params.sampler == 'yes':
assert ((params.task == 'classification') or (params.task == 'deepsurv')), 'Cannot make sampler in regression.'
assert (len(params.label_list) == 1), 'Cannot make sampler for multi-label.'
shuffle = False
sampler = _make_sampler(split_data)
else:
# When params.sampler == 'no'
sampler = None
split_loader = DataLoader(
dataset=split_data,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0,
sampler=sampler
)
return split_loader