oahzxl's picture
update
ab7be96
raw
history blame contribute delete
No virus
15.6 kB
import functools
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.vision_transformer import Mlp
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
) -> None:
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
text_embeds = self.text_proj(text_embeds)
batch, num_frames, channels, height, width = image_embeds.shape
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds)
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
embeds = torch.cat(
[text_embeds, image_embeds], dim=1
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
return embeds
class OpenSoraPatchEmbed3D(nn.Module):
"""Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self,
patch_size=(2, 4, 4),
in_chans=3,
embed_dim=96,
norm_layer=None,
flatten=True,
):
super().__init__()
self.patch_size = patch_size
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # (B C T H W)
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
freqs = freqs.to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
if t_freq.dtype != dtype:
t_freq = t_freq.to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs // s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
return next(self.parameters()).dtype
class OpenSoraCaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(
self,
in_channels,
hidden_size,
uncond_prob,
act_layer=nn.GELU(approximate="tanh"),
token_num=120,
):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels,
hidden_features=hidden_size,
out_features=hidden_size,
act_layer=act_layer,
drop=0,
)
self.register_buffer(
"y_embedding",
torch.randn(token_num, in_channels) / in_channels**0.5,
)
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class OpenSoraPositionEmbedding2D(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
assert dim % 4 == 0, "dim must be divisible by 4"
half_dim = dim // 2
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _get_sin_cos_emb(self, t: torch.Tensor):
out = torch.einsum("i,d->id", t, self.inv_freq)
emb_cos = torch.cos(out)
emb_sin = torch.sin(out)
return torch.cat((emb_sin, emb_cos), dim=-1)
@functools.lru_cache(maxsize=512)
def _get_cached_emb(
self,
device: torch.device,
dtype: torch.dtype,
h: int,
w: int,
scale: float = 1.0,
base_size: Optional[int] = None,
):
grid_h = torch.arange(h, device=device) / scale
grid_w = torch.arange(w, device=device) / scale
if base_size is not None:
grid_h *= base_size / h
grid_w *= base_size / w
grid_h, grid_w = torch.meshgrid(
grid_w,
grid_h,
indexing="ij",
) # here w goes first
grid_h = grid_h.t().reshape(-1)
grid_w = grid_w.t().reshape(-1)
emb_h = self._get_sin_cos_emb(grid_h)
emb_w = self._get_sin_cos_emb(grid_w)
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)
def forward(
self,
x: torch.Tensor,
h: int,
w: int,
scale: Optional[float] = 1.0,
base_size: Optional[int] = None,
) -> torch.Tensor:
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size)
def get_3d_rotary_pos_embed(
embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
crops_coords (`Tuple[int]`):
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the spatial positional embedding (height, width).
temporal_size (`int`):
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
start, stop = crops_coords
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
grid_t = torch.from_numpy(grid_t).float()
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
freqs_t = freqs_t.repeat_interleave(2, dim=-1)
# Spatial frequencies for height and width
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
grid_h = torch.from_numpy(grid_h).float()
grid_w = torch.from_numpy(grid_w).float()
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
freqs_h = freqs_h.repeat_interleave(2, dim=-1)
freqs_w = freqs_w.repeat_interleave(2, dim=-1)
# Broadcast and concatenate tensors along specified dimension
def broadcast(tensors, dim=-1):
num_tensors = len(tensors)
shape_lens = {len(t.shape) for t in tensors}
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*(list(t.shape) for t in tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all(
[*(len(set(t[1])) <= 2 for t in expandable_dims)]
), "invalid dimensions for broadcastable concatenation"
max_dims = [(t[0], max(t[1])) for t in expandable_dims]
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
return torch.cat(tensors, dim=dim)
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
t, h, w, d = freqs.shape
freqs = freqs.view(t * h * w, d)
# Generate sine and cosine components
sin = freqs.sin()
cos = freqs.cos()
if use_real:
return cos, sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Use for example in Lumina
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Use for example in Stable Audio
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)