import torch import torch.nn as nn import torch.utils.checkpoint from videosys.models.modules.normalization import LlamaRMSNorm class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = LlamaRMSNorm, enable_flash_attn: bool = False, rope=None, qk_norm_legacy: bool = False, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.enable_flash_attn = enable_flash_attn self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.qk_norm_legacy = qk_norm_legacy self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.rope = False if rope is not None: self.rope = True self.rotary_emb = rope def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape # flash attn is not memory efficient for small sequences, this is empirical enable_flash_attn = self.enable_flash_attn and (N > B) qkv = self.qkv(x) qkv_shape = (B, N, 3, self.num_heads, self.head_dim) qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) if self.qk_norm_legacy: # WARNING: this may be a bug if self.rope: q = self.rotary_emb(q) k = self.rotary_emb(k) q, k = self.q_norm(q), self.k_norm(k) else: q, k = self.q_norm(q), self.k_norm(k) if self.rope: q = self.rotary_emb(q) k = self.rotary_emb(k) if enable_flash_attn: from flash_attn import flash_attn_func # (B, #heads, N, #dim) -> (B, N, #heads, #dim) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) x = flash_attn_func( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, softmax_scale=self.scale, ) else: dtype = q.dtype q = q * self.scale attn = q @ k.transpose(-2, -1) # translate attn to float32 attn = attn.to(torch.float32) attn = attn.softmax(dim=-1) attn = attn.to(dtype) # cast back attn to original dtype attn = self.attn_drop(attn) x = attn @ v x_output_shape = (B, N, C) if not enable_flash_attn: x = x.transpose(1, 2) x = x.reshape(x_output_shape) x = self.proj(x) x = self.proj_drop(x) return x class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): super(MultiHeadCrossAttention, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.q_linear = nn.Linear(d_model, d_model) self.kv_linear = nn.Linear(d_model, d_model * 2) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, cond, mask=None): # query/value: img tokens; key: condition; mask: if padding tokens B, N, C = x.shape q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(2) attn_bias = None # TODO: support torch computation import xformers.ops if mask is not None: attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, -1, C) x = self.proj(x) x = self.proj_drop(x) return x