File size: 5,234 Bytes
cc732a6
0842498
cc732a6
0842498
cc732a6
 
0842498
cc732a6
 
 
 
0842498
cc732a6
0842498
cc732a6
0842498
cc732a6
 
0842498
cc732a6
 
 
 
 
 
 
0842498
cc732a6
 
0842498
 
 
 
923b86d
0842498
 
 
cc732a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a9f0f
cc732a6
 
95a9f0f
cc732a6
 
 
 
 
 
 
 
63a0180
cc732a6
 
3638fca
cc732a6
f817fc9
cc732a6
 
 
 
95a9f0f
cc732a6
95a9f0f
cc732a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a9f0f
 
cc732a6
 
 
 
95a9f0f
cc732a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python

from __future__ import annotations

import gradio as gr
import torch

from app_canny import create_demo as create_demo_canny
# from app_depth import create_demo as create_demo_depth
# from app_recoloring import create_demo as create_demo_recoloring
from model import Model

DESCRIPTION = "# BRIA 2.2 ControlNets"

model = Model(base_model_id='briaai/BRIA-2.2', task_name="Canny")

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem("Canny"):
            create_demo_canny(model.process_canny)
        # with gr.TabItem("Depth (Future)"):
        #     create_demo_canny(model.process_mlsd)
        # with gr.TabItem("Recoloring (Future)"):
        #     create_demo_canny(model.process_scribble)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()




################################################################



# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
# from diffusers.utils import load_image
# from PIL import Image
# import torch
# import numpy as np
# import cv2
# import gradio as gr
# from torchvision import transforms 

# controlnet = ControlNetModel.from_pretrained(
#     "briaai/BRIA-2.2-ControlNet-Canny",
#     torch_dtype=torch.float16
# ).to('cuda')

# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
#     "briaai/BRIA-2.2",
#     controlnet=controlnet,
#     torch_dtype=torch.float16,
#     device_map='auto',
#     low_cpu_mem_usage=True,
#     offload_state_dict=True,
# ).to('cuda')
# pipe.scheduler = EulerAncestralDiscreteScheduler(
#     beta_start=0.00085,
#     beta_end=0.012,
#     beta_schedule="scaled_linear",
#     num_train_timesteps=1000,
#     steps_offset=1
# )
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.force_zeros_for_empty_prompt = False

# low_threshold = 100
# high_threshold = 200

# def resize_image(image):
#     image = image.convert('RGB')
#     current_size = image.size
#     if current_size[0] > current_size[1]:
#         center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
#     else:
#         center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
#     resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
#     return resized_image

# def get_canny_filter(image):
    
#     if not isinstance(image, np.ndarray):
#         image = np.array(image) 
        
#     image = cv2.Canny(image, low_threshold, high_threshold)
#     image = image[:, :, None]
#     image = np.concatenate([image, image, image], axis=2)
#     canny_image = Image.fromarray(image)
#     return canny_image

# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
#     generator = torch.manual_seed(seed)
    
#     # resize input_image to 1024x1024
#     input_image = resize_image(input_image)
    
#     canny_image = get_canny_filter(input_image)
  
#     images = pipe(
#         prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
#         generator=generator,
#         ).images

#     return [canny_image,images[0]]
    
# block = gr.Blocks().queue()

# with block:
#     gr.Markdown("## BRIA 2.2 ControlNet Canny")
#     gr.HTML('''
#       <p style="margin-bottom: 10px; font-size: 94%">
#         This is a demo for ControlNet Canny that using
#         <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. 
#         Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
#       </p>
#     ''')
#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
#             prompt = gr.Textbox(label="Prompt")
#             negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
#             num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
#             controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
#             seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
#             run_button = gr.Button(value="Run")
            
            
#         with gr.Column():
#             result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
#     ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
#     run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

# block.launch(debug = True)