File size: 8,171 Bytes
0d89394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import clip
import numpy as np
import pandas as pd
import torch
import transformers
import torch
import torch.nn as nn

from enum import Enum
from torch.nn import functional as nnf
from typing import Tuple, Optional, Union
from transformers import GPT2Tokenizer, GPT2LMHeadModel

class MappingType(Enum):
    MLP = 'mlp'
    Transformer = 'transformer'

class MlpTransformer(nn.Module):
     def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
         super().__init__()
         out_d = out_d if out_d is not None else in_dim
         self.fc1 = nn.Linear(in_dim, h_dim)
         self.act = act
         self.fc2 = nn.Linear(h_dim, out_d)
         self.dropout = nn.Dropout(dropout)

     def forward(self, x):
         x = self.fc1(x)
         x = self.act(x)
         x = self.dropout(x)
         x = self.fc2(x)
         x = self.dropout(x)

         return x

class MLP(nn.Module):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) - 1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())

        self.model = nn.Sequential(*layers)


class MultiHeadAttention(nn.Module):
    def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim_self // num_heads
        self.scale = head_dim ** -0.5
        self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
        self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
        self.project = nn.Linear(dim_self, dim_self)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, y=None, mask=None):
        y = y if y is not None else x
        b, n, c = x.shape
        _, m, d = y.shape

        queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
        keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
        keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
        attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale

        if mask is not None:
            if mask.dim() == 2:
                mask = mask.unsqueeze(1)
            attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))

        attention = attention.softmax(dim=2)

        out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
        out = self.project(out)

        return out, attention


class TransformerLayer(nn.Module):
    def forward_with_attention(self, x, y=None, mask=None):
        x_, attention = self.attn(self.norm1(x), y, mask)
        x = x + x_
        x = x + self.mlp(self.norm2(x))

        return x, attention

    def forward(self, x, y=None, mask=None):
        x = x + self.attn(self.norm1(x), y, mask)[0]
        x = x + self.mlp(self.norm2(x))

        return x

    def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
                 norm_layer: nn.Module = nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim_self)
        self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
        self.norm2 = norm_layer(dim_self)
        self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)


class Transformer(nn.Module):
    def forward_with_attention(self, x, y=None, mask=None):
        attentions = []
        for layer in self.layers:
            x, att = layer.forward_with_attention(x, y, mask)
            attentions.append(att)

        return x, attentions

    def forward(self, x, y=None, mask=None):
        for i, layer in enumerate(self.layers):
            if i % 2 == 0 and self.enc_dec:
                x = layer(x, y)
            elif self.enc_dec:
                x = layer(x, x, mask)
            else:
                x = layer(x, y, mask)
        return x

    def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
                 mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
        super(Transformer, self).__init__()
        dim_ref = dim_ref if dim_ref is not None else dim_self
        self.enc_dec = enc_dec

        if enc_dec:
            num_layers = num_layers * 2

        layers = []

        for i in range(num_layers):
            if i % 2 == 0 and enc_dec:
                layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
            elif enc_dec:
                layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
            else:
                layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))

        self.layers = nn.ModuleList(layers)


class TransformerMapper(nn.Module):
    def forward(self, x):
        x = self.linear(x).view(x.shape[0], self.clip_length, -1)
        prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
        prefix = torch.cat((x, prefix), dim=1)
        out = self.transformer(prefix)[:, self.clip_length:]

        return out

    def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
        super(TransformerMapper, self).__init__()
        self.clip_length = clip_length
        self.transformer = Transformer(dim_embedding, 8, num_layers)
        self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
        self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)

class MLP(nn.Module):
    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) - 1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)


class ClipCaptionModel(nn.Module):
    def __init__(self, gpt, prefix_length: int, prefix_size: int = 768):
        super(ClipCaptionModel, self).__init__()

        self.prefix_length = prefix_length
        clip_length = prefix_length
        num_layers = 8

        self.gpt = GPT2LMHeadModel.from_pretrained(gpt)
        # self.gpt = freeze(self.gpt)
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length,
                                              clip_length, num_layers)

    def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens: torch.Tensor, prefix: torch.Tensor,
                mask: Optional[torch.Tensor] = None,
                labels: Optional[torch.Tensor] = None):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)

        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)

        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)

        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)

        return out


class ClipCaptionPrefix(ClipCaptionModel):
    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()

        return self