File size: 9,909 Bytes
d617811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Tuple

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import ImageList
from detectron2.utils.memory import _ignore_torch_cuda_oom

from einops import rearrange

@META_ARCH_REGISTRY.register()
class CATSeg(nn.Module):
    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        size_divisibility: int,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        clip_pixel_mean: Tuple[float],
        clip_pixel_std: Tuple[float],
        train_class_json: str,
        test_class_json: str,
        sliding_window: bool,
        clip_finetune: str,
        backbone_multiplier: float,
        clip_pretrained: str,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        if size_divisibility < 0:
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility

        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
        self.register_buffer("clip_pixel_mean", torch.Tensor(clip_pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("clip_pixel_std", torch.Tensor(clip_pixel_std).view(-1, 1, 1), False)
        
        self.train_class_json = train_class_json
        self.test_class_json = test_class_json

        self.clip_finetune = clip_finetune
        for name, params in self.sem_seg_head.predictor.clip_model.named_parameters():
            if "visual" in name:
                if clip_finetune == "prompt":
                    params.requires_grad = True if "prompt" in name else False
                elif clip_finetune == "attention":
                    params.requires_grad = True if "attn" in name or "position" in name else False
                elif clip_finetune == "full":
                    params.requires_grad = True
                else:
                    params.requires_grad = False
            else:
                params.requires_grad = False

        finetune_backbone = backbone_multiplier > 0.
        for name, params in self.backbone.named_parameters():
            if "norm0" in name:
                params.requires_grad = False
            else:
                params.requires_grad = finetune_backbone

        self.sliding_window = sliding_window
        self.clip_resolution = (384, 384) if clip_pretrained == "ViT-B/16" else (336, 336)
        self.sequential = False

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
        
        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            "clip_pixel_mean": cfg.MODEL.CLIP_PIXEL_MEAN,
            "clip_pixel_std": cfg.MODEL.CLIP_PIXEL_STD,
            "train_class_json": cfg.MODEL.SEM_SEG_HEAD.TRAIN_CLASS_JSON,
            "test_class_json": cfg.MODEL.SEM_SEG_HEAD.TEST_CLASS_JSON,
            "sliding_window": cfg.TEST.SLIDING_WINDOW,
            "clip_finetune": cfg.MODEL.SEM_SEG_HEAD.CLIP_FINETUNE,
            "backbone_multiplier": cfg.SOLVER.BACKBONE_MULTIPLIER,
            "clip_pretrained": cfg.MODEL.SEM_SEG_HEAD.CLIP_PRETRAINED,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        if not self.training and self.sliding_window:
            if not self.sequential:
                with _ignore_torch_cuda_oom():
                    return self.inference_sliding_window(batched_inputs)
                self.sequential = True
            return self.inference_sliding_window(batched_inputs)

        clip_images = [(x - self.clip_pixel_mean) / self.clip_pixel_std for x in images]
        clip_images = ImageList.from_tensors(clip_images, self.size_divisibility)
        
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        clip_images = F.interpolate(clip_images.tensor, size=self.clip_resolution, mode='bilinear', align_corners=False, )
        clip_features = self.sem_seg_head.predictor.clip_model.encode_image(clip_images, dense=True)

        images_resized = F.interpolate(images.tensor, size=(384, 384), mode='bilinear', align_corners=False,)
        features = self.backbone(images_resized)

        outputs = self.sem_seg_head(clip_features, features)
        if self.training:
            targets = torch.stack([x["sem_seg"].to(self.device) for x in batched_inputs], dim=0)
            outputs = F.interpolate(outputs, size=(targets.shape[-2], targets.shape[-1]), mode="bilinear", align_corners=False)
            
            num_classes = outputs.shape[1]
            mask = targets != self.sem_seg_head.ignore_value

            outputs = outputs.permute(0,2,3,1)
            _targets = torch.zeros(outputs.shape, device=self.device)
            _onehot = F.one_hot(targets[mask], num_classes=num_classes).float()
            _targets[mask] = _onehot
            
            loss = F.binary_cross_entropy_with_logits(outputs, _targets)
            losses = {"loss_sem_seg" : loss}
            return losses
        else:
            outputs = outputs.sigmoid()
            image_size = images.image_sizes[0]
            height = batched_inputs[0].get("height", image_size[0])
            width = batched_inputs[0].get("width", image_size[1])

            output = sem_seg_postprocess(outputs[0], image_size, height, width)
            processed_results = [{'sem_seg': output}]
            return processed_results


    @torch.no_grad()
    def inference_sliding_window(self, batched_inputs, kernel=384, overlap=0.333, out_res=[640, 640]):
        images = [x["image"].to(self.device, dtype=torch.float32) for x in batched_inputs]
        stride = int(kernel * (1 - overlap))
        unfold = nn.Unfold(kernel_size=kernel, stride=stride)
        fold = nn.Fold(out_res, kernel_size=kernel, stride=stride)

        image = F.interpolate(images[0].unsqueeze(0), size=out_res, mode='bilinear', align_corners=False).squeeze()
        image = rearrange(unfold(image), "(C H W) L-> L C H W", C=3, H=kernel)
        global_image = F.interpolate(images[0].unsqueeze(0), size=(kernel, kernel), mode='bilinear', align_corners=False)
        image = torch.cat((image, global_image), dim=0)

        images = (image - self.pixel_mean) / self.pixel_std
        clip_images = (image - self.clip_pixel_mean) / self.clip_pixel_std
        clip_images = F.interpolate(clip_images, size=self.clip_resolution, mode='bilinear', align_corners=False, )
        clip_features = self.sem_seg_head.predictor.clip_model.encode_image(clip_images, dense=True)
        
        if self.sequential:
            outputs = []
            for clip_feat, image in zip(clip_features, images):
                feature = self.backbone(image.unsqueeze(0))
                output = self.sem_seg_head(clip_feat.unsqueeze(0), feature)
                outputs.append(output[0])
            outputs = torch.stack(outputs, dim=0)
        else:
            features = self.backbone(images)
            outputs = self.sem_seg_head(clip_features, features)

        outputs = F.interpolate(outputs, size=kernel, mode="bilinear", align_corners=False)
        outputs = outputs.sigmoid()
        
        global_output = outputs[-1:]
        global_output = F.interpolate(global_output, size=out_res, mode='bilinear', align_corners=False,)
        outputs = outputs[:-1]
        outputs = fold(outputs.flatten(1).T) / fold(unfold(torch.ones([1] + out_res, device=self.device)))
        outputs = (outputs + global_output) / 2.

        height = batched_inputs[0].get("height", out_res[0])
        width = batched_inputs[0].get("width", out_res[1])
        output = sem_seg_postprocess(outputs, out_res, height, width)
        return [{'sem_seg': output}]