kadirnar's picture
Upload 98 files
e7d5680 verified
raw
history blame
No virus
14.2 kB
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.vision_transformer import Mlp
from opensora.acceleration.checkpoint import auto_grad_checkpoint
from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward
from opensora.acceleration.parallel_states import get_sequence_parallel_group
from opensora.models.layers.blocks import (
Attention,
CaptionEmbedder,
MultiHeadCrossAttention,
PatchEmbed3D,
SeqParallelAttention,
SeqParallelMultiHeadCrossAttention,
T2IFinalLayer,
TimestepEmbedder,
approx_gelu,
get_1d_sincos_pos_embed,
get_2d_sincos_pos_embed,
get_layernorm,
t2i_modulate,
)
from opensora.registry import MODELS
from opensora.utils.ckpt_utils import load_checkpoint
class STDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
num_heads,
d_s=None,
d_t=None,
mlp_ratio=4.0,
drop_path=0.0,
enable_flashattn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
):
super().__init__()
self.hidden_size = hidden_size
self.enable_flashattn = enable_flashattn
self._enable_sequence_parallelism = enable_sequence_parallelism
if enable_sequence_parallelism:
self.attn_cls = SeqParallelAttention
self.mha_cls = SeqParallelMultiHeadCrossAttention
else:
self.attn_cls = Attention
self.mha_cls = MultiHeadCrossAttention
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.attn = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flashattn=enable_flashattn,
)
self.cross_attn = self.mha_cls(hidden_size, num_heads)
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
# temporal attention
self.d_s = d_s
self.d_t = d_t
if self._enable_sequence_parallelism:
sp_size = dist.get_world_size(get_sequence_parallel_group())
# make sure d_t is divisible by sp_size
assert d_t % sp_size == 0
self.d_t = d_t // sp_size
self.attn_temp = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flashattn=self.enable_flashattn,
)
def forward(self, x, y, t, mask=None, tpe=None):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
# spatial branch
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s)
x_s = self.attn(x_s)
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s)
x = x + self.drop_path(gate_msa * x_s)
# temporal branch
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s)
if tpe is not None:
x_t = x_t + tpe
x_t = self.attn_temp(x_t)
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s)
x = x + self.drop_path(gate_msa * x_t)
# cross attn
x = x + self.cross_attn(x, y, mask)
# mlp
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
@MODELS.register_module()
class STDiT(nn.Module):
def __init__(
self,
input_size=(1, 32, 32),
in_channels=4,
patch_size=(1, 2, 2),
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
pred_sigma=True,
drop_path=0.0,
no_temporal_pos_emb=False,
caption_channels=4096,
model_max_length=120,
dtype=torch.float32,
space_scale=1.0,
time_scale=1.0,
freeze=None,
enable_flashattn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
):
super().__init__()
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.hidden_size = hidden_size
self.patch_size = patch_size
self.input_size = input_size
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)])
self.num_patches = num_patches
self.num_temporal = input_size[0] // patch_size[0]
self.num_spatial = num_patches // self.num_temporal
self.num_heads = num_heads
self.dtype = dtype
self.no_temporal_pos_emb = no_temporal_pos_emb
self.depth = depth
self.mlp_ratio = mlp_ratio
self.enable_flashattn = enable_flashattn
self.enable_layernorm_kernel = enable_layernorm_kernel
self.space_scale = space_scale
self.time_scale = time_scale
self.register_buffer("pos_embed", self.get_spatial_pos_embed())
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed())
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]
self.blocks = nn.ModuleList(
[
STDiTBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=self.mlp_ratio,
drop_path=drop_path[i],
enable_flashattn=self.enable_flashattn,
enable_layernorm_kernel=self.enable_layernorm_kernel,
enable_sequence_parallelism=enable_sequence_parallelism,
d_t=self.num_temporal,
d_s=self.num_spatial,
)
for i in range(self.depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels)
# init model
self.initialize_weights()
self.initialize_temporal()
if freeze is not None:
assert freeze in ["not_temporal", "text"]
if freeze == "not_temporal":
self.freeze_not_temporal()
elif freeze == "text":
self.freeze_text()
# sequence parallel related configs
self.enable_sequence_parallelism = enable_sequence_parallelism
if enable_sequence_parallelism:
self.sp_rank = dist.get_rank(get_sequence_parallel_group())
else:
self.sp_rank = None
def forward(self, x, timestep, y, mask=None):
"""
Forward pass of STDiT.
Args:
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
timestep (torch.Tensor): diffusion time steps; of shape [B]
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
Returns:
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
# embedding
x = self.x_embedder(x) # [B, N, C]
x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial)
x = x + self.pos_embed
x = rearrange(x, "B T S C -> B (T S) C")
# shard over the sequence dim if sp is enabled
if self.enable_sequence_parallelism:
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C]
t0 = self.t_block(t) # [B, C]
y = self.y_embedder(y, self.training) # [B, 1, N_token, C]
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# blocks
for i, block in enumerate(self.blocks):
if i == 0:
if self.enable_sequence_parallelism:
tpe = torch.chunk(
self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1
)[self.sp_rank].contiguous()
else:
tpe = self.pos_embed_temporal
else:
tpe = None
x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe)
if self.enable_sequence_parallelism:
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up")
# x.shape: [B, N, C]
# final process
x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out]
x = self.unpatchify(x) # [B, C_out, T, H, W]
# cast to float32 for better accuracy
x = x.to(torch.float32)
return x
def unpatchify(self, x):
"""
Args:
x (torch.Tensor): of shape [B, N, C]
Return:
x (torch.Tensor): of shape [B, C_out, T, H, W]
"""
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
T_p, H_p, W_p = self.patch_size
x = rearrange(
x,
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
N_t=N_t,
N_h=N_h,
N_w=N_w,
T_p=T_p,
H_p=H_p,
W_p=W_p,
C_out=self.out_channels,
)
return x
def unpatchify_old(self, x):
c = self.out_channels
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
pt, ph, pw = self.patch_size
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def get_spatial_pos_embed(self, grid_size=None):
if grid_size is None:
grid_size = self.input_size[1:]
pos_embed = get_2d_sincos_pos_embed(
self.hidden_size,
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]),
scale=self.space_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def get_temporal_pos_embed(self):
pos_embed = get_1d_sincos_pos_embed(
self.hidden_size,
self.input_size[0] // self.patch_size[0],
scale=self.time_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def freeze_not_temporal(self):
for n, p in self.named_parameters():
if "attn_temp" not in n:
p.requires_grad = False
def freeze_text(self):
for n, p in self.named_parameters():
if "cross_attn" in n:
p.requires_grad = False
def initialize_temporal(self):
for block in self.blocks:
nn.init.constant_(block.attn_temp.proj.weight, 0)
nn.init.constant_(block.attn_temp.proj.bias, 0)
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
# Zero-out adaLN modulation layers in PixArt blocks:
for block in self.blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
@MODELS.register_module("STDiT-XL/2")
def STDiT_XL_2(from_pretrained=None, **kwargs):
model = STDiT(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs)
if from_pretrained is not None:
load_checkpoint(model, from_pretrained)
return model