from enum import IntEnum from functools import partial import einops import numpy as np import torch from contextlib import nullcontext import torch import torch.nn as nn from transformers import CLIPTextModelWithProjection import copy from transformers import T5ForConditionalGeneration from transformers.modeling_outputs import BaseModelOutput import torch.nn.functional as F def get_mlp_head(input_size, hidden_size, output_size, dropout=0): return nn.Sequential(*[ nn.Linear(input_size, hidden_size), nn.ReLU(), nn.LayerNorm(hidden_size, eps=1e-12), nn.Dropout(dropout), nn.Linear(hidden_size, output_size) ]) def layer_repeat(module, N, share_layer=False): if share_layer: return nn.ModuleList([module] * N) else: return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module]) class CLIPLanguageEncoder(nn.Module): def __init__(self, weights="openai/clip-vit-large-patch14", output_dim=768, freeze_backbone=True, use_projection=False, projection_type='mlp', num_projection_layers=1, dropout=0.1): super().__init__() self.context = torch.no_grad if freeze_backbone else nullcontext self.model = CLIPTextModelWithProjection.from_pretrained(weights) self.use_projection = use_projection self.projection_type = projection_type if use_projection: if projection_type == 'mlp': self.projection = get_mlp_head(self.model.config.hidden_size, output_dim, output_dim, dropout=dropout) else: raise NotImplementedError #self.attention = nn.MultiheadAttention(embed_dim=768, num_heads=12, batch_first=True) def forward(self, txt_ids, txt_masks): with self.context(): txt = self.model(txt_ids, txt_masks).last_hidden_state txt = self.model.text_projection(txt) txt = torch.nn.functional.normalize(txt, p=2, dim=2) #txt = self.attention(txt, txt, txt, key_padding_mask=txt_masks.logical_not())[0] if self.use_projection: if self.projection_type == 'mlp': txt = self.projection(txt) elif self.projection_type == 'attention': for attention_layer in self.projection: txt = attention_layer(txt, tgt_key_padding_mask = txt_masks.logical_not()) else: raise NotImplementedError return txt def _init_weights_bert(module, std=0.02): """ Huggingface transformer weight initialization, most commonly for bert initialization """ if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def break_up_pc(pc): """ Split the pointcloud into xyz positions and features tensors. This method is taken from VoteNet codebase (https://github.com/facebookresearch/votenet) @param pc: pointcloud [N, 3 + C] :return: the xyz tensor and the feature tensor """ xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features class ObjectEncoder(nn.Module): def __init__(self, backbone='none', input_feat_size=768, hidden_size=768, freeze_backbone=False, use_projection=False, tgt_cls_num=607, pretrained=None, dropout=0.1, use_cls_head=True): super().__init__() self.freeze_backbone = freeze_backbone self.context = torch.no_grad if freeze_backbone else nullcontext # if backbone == 'pointnet++': # self.backbone = PointNetPP( # sa_n_points=[32, 16, None], # sa_n_samples=[32, 32, None], # sa_radii=[0.2, 0.4, None], # sa_mlps=[[3, 64, 64, 128], [128, 128, 128, 256], [256, 256, 512, 768]], # ) if use_cls_head: self.cls_head = get_mlp_head(input_feat_size, input_feat_size // 2, tgt_cls_num, dropout=0.3) self.use_projection = use_projection if use_projection: self.input_feat_proj = nn.Sequential(nn.Linear(input_feat_size, hidden_size), nn.LayerNorm(hidden_size)) else: assert input_feat_size == hidden_size, "input_feat_size should be equal to hidden_size!" if dropout > 0: self.dropout = nn.Dropout(dropout) # load weights self.apply(_init_weights_bert) if pretrained: print("load pretrained weights from {}".format(pretrained)) pre_state_dict = torch.load(pretrained) state_dict = {} for k, v in pre_state_dict.items(): if k[0] in ['0', '2', '4']: # key mapping for voxel k = 'cls_head.' + k k = k.replace('vision_encoder.vis_cls_head.', 'cls_head.') # key mapping for mv k = k.replace('point_cls_head.', 'cls_head.') # key mapping for pc k = k.replace('point_feature_extractor.', 'backbone.') state_dict[k] = v warning = self.load_state_dict(state_dict, strict=False) print(warning) def freeze_bn(self, m): for layer in m.modules(): if isinstance(layer, nn.BatchNorm2d): layer.eval() def forward(self, obj_feats, **kwargs): if self.freeze_backbone and hasattr(self, 'backbone'): self.freeze_bn(self.backbone) batch_size, num_objs = obj_feats.shape[:2] with self.context(): if hasattr(self, 'backbone'): obj_feats = self.backbone(einops.rearrange(obj_feats, 'b o p d -> (b o) p d')) obj_feats = einops.rearrange(obj_feats, '(b o) d -> b o d', b=batch_size) obj_embeds = self.input_feat_proj(obj_feats) if self.use_projection else obj_feats if hasattr(self, 'dropout'): obj_embeds = self.dropout(obj_embeds) if hasattr(self, 'cls_head'): obj_cls_logits = self.cls_head(obj_feats) return obj_embeds, obj_cls_logits else: return obj_embeds class SelfAttentionLayer(nn.Module): def __init__( self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False, batch_first=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_post( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None ): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, value=tgt, attn_mask=attn_mask, key_padding_mask=tgt_key_padding_mask, )[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None ): tgt2 = self.norm(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, value=tgt2, attn_mask=attn_mask, key_padding_mask=tgt_key_padding_mask, )[0] tgt = tgt + self.dropout(tgt2) return tgt def forward( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None ): if self.normalize_before: return self.forward_pre( tgt, attn_mask, tgt_key_padding_mask, query_pos ) return self.forward_post( tgt, attn_mask, tgt_key_padding_mask, query_pos ) class CrossAttentionLayer(nn.Module): def __init__( self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False, batch_first=False, ): super().__init__() self.multihead_attn = nn.MultiheadAttention( d_model, nhead, dropout=dropout, batch_first=batch_first, add_zero_attn=True ) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_post( self, tgt, memory, attn_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=attn_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre( self, tgt, memory, attn_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): tgt2 = self.norm(tgt) tgt2 = self.multihead_attn( query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=attn_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout(tgt2) return tgt def forward( self, tgt, memory, attn_mask=None, memory_key_padding_mask=None, pos=None, query_pos=None, ): if self.normalize_before: return self.forward_pre( tgt, memory, attn_mask, memory_key_padding_mask, pos, query_pos, ) return self.forward_post( tgt, memory, attn_mask, memory_key_padding_mask, pos, query_pos ) class FFNLayer(nn.Module): def __init__( self, d_model, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False, ): super().__init__() # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm = nn.LayerNorm(d_model) self.activation = get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_post(self, tgt): tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre(self, tgt): tgt2 = self.norm(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout(tgt2) return tgt def forward(self, tgt): if self.normalize_before: return self.forward_pre(tgt) return self.forward_post(tgt) def get_activation_fn(activation_type): if activation_type not in ["relu", "gelu", "glu"]: raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}") return getattr(F, activation_type) class MultiHeadAttentionSpatial(nn.Module): def __init__( self, d_model, n_head, dropout=0.1, spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul', ): super().__init__() assert d_model % n_head == 0, 'd_model: %d, n_head: %d' % (d_model, n_head) self.n_head = n_head self.d_model = d_model self.d_per_head = d_model // n_head self.spatial_multihead = spatial_multihead self.spatial_dim = spatial_dim self.spatial_attn_fusion = spatial_attn_fusion self.w_qs = nn.Linear(d_model, d_model) self.w_ks = nn.Linear(d_model, d_model) self.w_vs = nn.Linear(d_model, d_model) self.fc = nn.Linear(d_model, d_model) self.spatial_n_head = n_head if spatial_multihead else 1 if self.spatial_attn_fusion in ['mul', 'bias', 'add']: self.pairwise_loc_fc = nn.Linear(spatial_dim, self.spatial_n_head) elif self.spatial_attn_fusion == 'ctx': self.pairwise_loc_fc = nn.Linear(spatial_dim, d_model) elif self.spatial_attn_fusion == 'cond': self.lang_cond_fc = nn.Linear(d_model, self.spatial_n_head * (spatial_dim + 1)) else: raise NotImplementedError('unsupported spatial_attn_fusion %s' % (self.spatial_attn_fusion)) def forward(self, q, k, v, pairwise_locs, key_padding_mask=None, txt_embeds=None): residual = q q = einops.rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head) k = einops.rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head) v = einops.rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head) attn = torch.einsum('hblk,hbtk->hblt', q, k) / np.sqrt(q.shape[-1]) if self.spatial_attn_fusion in ['mul', 'bias', 'add']: loc_attn = self.pairwise_loc_fc(pairwise_locs) loc_attn = einops.rearrange(loc_attn, 'b l t h -> h b l t') if self.spatial_attn_fusion == 'mul': loc_attn = F.relu(loc_attn) if not self.spatial_multihead: loc_attn = einops.repeat(loc_attn, 'h b l t -> (h nh) b l t', nh=self.n_head) elif self.spatial_attn_fusion == 'ctx': loc_attn = self.pairwise_loc_fc(pairwise_locs) loc_attn = einops.rearrange(loc_attn, 'b l t (h k) -> h b l t k', h=self.n_head) loc_attn = torch.einsum('hblk,hbltk->hblt', q, loc_attn) / np.sqrt(q.shape[-1]) elif self.spatial_attn_fusion == 'cond': spatial_weights = self.lang_cond_fc(residual) spatial_weights = einops.rearrange(spatial_weights, 'b l (h d) -> h b l d', h=self.spatial_n_head, d=self.spatial_dim + 1) if self.spatial_n_head == 1: spatial_weights = einops.repeat(spatial_weights, '1 b l d -> h b l d', h=self.n_head) spatial_bias = spatial_weights[..., :1] spatial_weights = spatial_weights[..., 1:] loc_attn = torch.einsum('hbld,bltd->hblt', spatial_weights, pairwise_locs) + spatial_bias loc_attn = torch.sigmoid(loc_attn) if key_padding_mask is not None: mask = einops.repeat(key_padding_mask, 'b t -> h b l t', h=self.n_head, l=q.size(2)) attn = attn.masked_fill(mask, -np.inf) if self.spatial_attn_fusion in ['mul', 'cond']: loc_attn = loc_attn.masked_fill(mask, 0) else: loc_attn = loc_attn.masked_fill(mask, -np.inf) if self.spatial_attn_fusion == 'add': fused_attn = (torch.softmax(attn, 3) + torch.softmax(loc_attn, 3)) / 2 else: if self.spatial_attn_fusion in ['mul', 'cond']: fused_attn = torch.log(torch.clamp(loc_attn, min=1e-6)) + attn else: fused_attn = loc_attn + attn fused_attn = torch.softmax(fused_attn, 3) assert torch.sum(torch.isnan(fused_attn) == 0), print(fused_attn) output = torch.einsum('hblt,hbtv->hblv', fused_attn, v) output = einops.rearrange(output, 'head b l v -> b l (head v)') output = self.fc(output) return output, fused_attn class SpatialSelfAttentionLayer(nn.Module): def __init__( self, d_model, nhead, dropout=0.0, activation="relu", normalize_before=False, batch_first=False, spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul' ): super().__init__() self.self_attn = MultiHeadAttentionSpatial( d_model, nhead, dropout=dropout, spatial_multihead=spatial_multihead, spatial_dim=spatial_dim, spatial_attn_fusion=spatial_attn_fusion, ) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = get_activation_fn(activation) self.normalize_before = normalize_before self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_post( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None, pairwise_locs=None ): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, tgt, key_padding_mask=tgt_key_padding_mask, pairwise_locs=pairwise_locs, )[0] tgt = tgt + self.dropout(tgt2) tgt = self.norm(tgt) return tgt def forward_pre( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None, pairwise_locs=None ): tgt2 = self.norm(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, tgt, key_padding_mask=tgt_key_padding_mask, pairwise_locs=pairwise_locs, )[0] tgt = tgt + self.dropout(tgt2) return tgt def forward( self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None, pairwise_locs=None ): if self.normalize_before: return self.forward_pre( tgt, attn_mask, tgt_key_padding_mask, query_pos, pairwise_locs ) return self.forward_post( tgt, attn_mask, tgt_key_padding_mask, query_pos, pairwise_locs ) class QueryEncoderLayer(nn.Module): def __init__(self, d_model, nhead, memories, dim_feedforward=2048, dropout=0.1, activation="relu", prenorm=False, spatial_selfattn=False, structure='mixed', memory_dropout=0, drop_memories_test=[]): super().__init__() if spatial_selfattn: self.self_attn = SpatialSelfAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True) else: self.self_attn = SelfAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True) cross_attn_layer = CrossAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True) self.cross_attn_list = layer_repeat(cross_attn_layer, len(memories)) self.memory2ca = {memory:ca for memory, ca in zip(memories, self.cross_attn_list)} self.ffn = FFNLayer(d_model, dim_feedforward, dropout=dropout, activation=activation, normalize_before=prenorm) self.structure = structure self.memories = memories self.memory_dropout = memory_dropout self.drop_memories_test = drop_memories_test if structure == 'gate': self.gate_proj = nn.Linear(d_model, d_model) def forward(self, query, input_dict, pairwise_locs=None): _, query_masks, query_pos = input_dict['query'] def sequential_ca(query, memories): for memory in memories: cross_attn = self.memory2ca[memory] feat, mask, pos = input_dict[memory] if mask.ndim == 2: memory_key_padding_mask = mask attn_mask = None else: memory_key_padding_mask = None attn_mask = mask query = cross_attn(tgt=query, memory=feat, attn_mask=attn_mask, memory_key_padding_mask = memory_key_padding_mask, query_pos = query_pos, pos = pos) return query def parallel_ca(query, memories): assert 'prompt' not in memories query_list = [] for memory in memories: cross_attn = self.memory2ca[memory] feat, mask, pos = input_dict[memory] if mask.ndim == 2: memory_key_padding_mask = mask attn_mask = None else: memory_key_padding_mask = None attn_mask = mask update = cross_attn(tgt=query, memory=feat, attn_mask=attn_mask, memory_key_padding_mask = memory_key_padding_mask, query_pos = query_pos, pos = pos) query_list.append(update) # training time memory dropout if self.training and self.memory_dropout > 0.0: dropout_mask = torch.rand(query.shape[0], len(memories), device=query.device) > self.memory_dropout num_remained_memories = dropout_mask.sum(dim=1) dropout_mask = torch.logical_or(dropout_mask, num_remained_memories.unsqueeze(-1) == 0) num_remained_memories = dropout_mask.sum(dim=1) query_tensor = torch.stack(query_list, dim=1) query = (query_tensor * dropout_mask.unsqueeze(-1).unsqueeze(-1)).sum(dim=1) / num_remained_memories.unsqueeze(-1).unsqueeze(-1).float() else: query = torch.stack(query_list, dim=1).mean(dim=1) return query memories = self.memories if self.training else [m for m in self.memories if m not in self.drop_memories_test] if self.structure == 'sequential': query = sequential_ca(query, memories) elif self.structure == 'parallel': query = parallel_ca(query, memories) elif self.structure == 'mixed': # [mv,pc,vx] + prompt query = parallel_ca(query, [m for m in memories if m != 'prompt']) query = sequential_ca(query, ['prompt']) elif self.structure == 'gate': prompt = sequential_ca(query, ['prompt']) gate = torch.sigmoid(self.gate_proj(prompt)) update = parallel_ca(query, [m for m in self.memories if m != 'prompt']) query = (1. - gate) * query + gate * update else: raise NotImplementedError(f"Unknow structure type: {self.structure}") if isinstance(self.self_attn, SpatialSelfAttentionLayer): query = self.self_attn(query, tgt_key_padding_mask = query_masks, query_pos = query_pos, pairwise_locs = pairwise_locs) else: query = self.self_attn(query, tgt_key_padding_mask = query_masks, query_pos = query_pos) query = self.ffn(query) return query class QueryMaskEncoder(nn.Module): def __init__(self, memories=[], memory_dropout=0.0, hidden_size=768, num_attention_heads=12, num_layers=4, share_layer=False, spatial_selfattn=False, structure='sequential', drop_memories_test=[], use_self_mask=False, num_blocks=1): super().__init__() self.spatial_selfattn = spatial_selfattn query_encoder_layer = QueryEncoderLayer(hidden_size, num_attention_heads, memories, spatial_selfattn=spatial_selfattn, structure=structure, memory_dropout=memory_dropout, drop_memories_test=drop_memories_test) self.unified_encoder = layer_repeat(query_encoder_layer, num_layers, share_layer) self.apply(_init_weights_bert) self.memory_dropout = memory_dropout self.scene_meomories = [x for x in memories if x != 'prompt'] self.drop_memories_test = drop_memories_test self.use_self_mask = use_self_mask self.num_heads = num_attention_heads self.num_blocks = num_blocks def forward(self, input_dict, pairwise_locs, mask_head=None): predictions_class, predictions_mask = [], [] query = input_dict['query'][0] voxel_feat = input_dict['voxel'][0] if 'voxel' in input_dict.keys() else None for block_counter in range(self.num_blocks): for i, layer in enumerate(self.unified_encoder): if mask_head is not None: output_class, outputs_mask, attn_mask = mask_head(query) predictions_class.append(output_class) predictions_mask.append(outputs_mask) if self.use_self_mask: attn_mask[attn_mask.all(-1)] = False # prevent query to attend to no point attn_mask = attn_mask.repeat_interleave(self.num_heads, 0) for memory in input_dict.keys(): if memory in ['query', 'prompt']: continue input_dict[memory][1] = attn_mask if isinstance(voxel_feat, list): input_dict['voxel'][0] = voxel_feat[i] # select voxel features from multi-scale query = layer(query, input_dict, pairwise_locs) return query, predictions_class, predictions_mask class PromptType(IntEnum): TXT = 1 IMAGE = 2 LOC = 3 class GroundHead(nn.Module): def __init__(self, input_size=768, hidden_size=768, dropout=0.3): super().__init__() self.og3d_head = get_mlp_head( input_size, hidden_size, 1, dropout=dropout ) def forward(self, obj_embeds, obj_masks=None, **kwargs): og3d_logits = self.og3d_head(obj_embeds).squeeze(2) if obj_masks is not None: og3d_logits = og3d_logits.masked_fill_(obj_masks.logical_not(), -float('inf')) return og3d_logits class T5(nn.Module): def __init__(self, variant='t5-small', input_size=768, use_projection=True, **kwargs): super().__init__() self.model = T5ForConditionalGeneration.from_pretrained(variant) self.model.config.update(kwargs) hidden_size = self.model.config.d_model self.use_projection = use_projection if use_projection: self.input_proj = nn.Sequential(nn.Linear(input_size, hidden_size), nn.LayerNorm(hidden_size)) else: assert input_size == hidden_size, "input_feat_size should be equal to hidden_size!" def forward(self, query_embeds, attention_masks, labels=None): if self.use_projection: query_embeds = self.input_proj(query_embeds) if labels is not None: outputs = self.model(encoder_outputs=[query_embeds], attention_mask=attention_masks, labels=labels) outputs = outputs.logits else: outputs = self.model.generate(encoder_outputs=BaseModelOutput(last_hidden_state=query_embeds), attention_mask=attention_masks, do_sample=False) outputs = outputs[:, 1:] # remove the decoder start token for T5 generation output. return outputs def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True, spatial_dim=5): if pairwise_rel_type == 'mlp': obj_locs = torch.cat([obj_centers, obj_whls], 2) pairwise_locs = torch.cat( [einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)), einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))], dim=3 ) return pairwise_locs pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ - einops.repeat(obj_centers, 'b l d -> b 1 l d') pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l) if spatial_dist_norm: max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') else: norm_pairwise_dists = pairwise_dists if spatial_dim == 1: return norm_pairwise_dists.unsqueeze(3) pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) if pairwise_rel_type == 'center': pairwise_locs = torch.stack( [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) elif pairwise_rel_type == 'vertical_bottom': bottom_centers = torch.clone(obj_centers) bottom_centers[:, :, 2] -= obj_whls[:, :, 2] bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \ - einops.repeat(bottom_centers, 'b l d -> b 1 l d') bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) # (b, l, l) bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps) pairwise_locs = torch.stack( [norm_pairwise_dists, bottom_pairwise_locs[..., 2] / bottom_pairwise_dists, bottom_pairwise_dists_2d / bottom_pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, pairwise_locs[..., 0] / pairwise_dists_2d], dim=3 ) if spatial_dim == 4: pairwise_locs = pairwise_locs[..., 1:] return pairwise_locs class Query3DUnified(torch.nn.Module): def __init__(self): super().__init__() # record parameters self.memories = ['mv', 'pc', 'voxel', 'prompt'] self.heads = ['ground', 'generation'] self.use_offline_voxel_fts = True self.use_offline_attn_mask = False self.inputs = self.memories[:] self.pairwise_rel_type = 'center' self.spatial_dim = 5 self.num_heads = 12 self.skip_query_encoder_mask_pred = True # build prompt type self.prompt_types = ['txt', 'loc'] # build feature encoder self.txt_encoder = CLIPLanguageEncoder(use_projection=True, projection_type='mlp', num_projection_layers=1) self.mv_encoder = ObjectEncoder(input_feat_size=768, hidden_size=768, use_projection=True, dropout=0.1, use_cls_head=False) self.voxel_encoder = ObjectEncoder(input_feat_size=128,hidden_size=768, use_projection=True, dropout=0.1, use_cls_head=False) self.pc_encoder = ObjectEncoder(input_feat_size=768, hidden_size=768, dropout=0.1,use_cls_head=False) # build location encoder dim_loc = 6 hidden_size = 768 self.dim_loc = dim_loc self.hidden_size = hidden_size self.coord_encoder = nn.Sequential( nn.Linear(3, hidden_size), nn.LayerNorm(hidden_size), ) self.box_encoder = nn.Sequential( nn.Linear(3, hidden_size), nn.LayerNorm(hidden_size), ) # build unified encoder self.unified_encoder = QueryMaskEncoder(hidden_size=768, num_attention_heads=12, num_layers=4, spatial_selfattn=True, memories=self.memories, drop_memories_test=[], memory_dropout=0.6, structure='mixed', use_self_mask=False, num_blocks=1) # build task head self.ground_head = GroundHead(hidden_size=384, input_size=768, dropout=0.3) self.generation_head = T5(variant='t5-small', input_size=768, use_projection=True, max_new_tokens=50) def prompt_encoder(self, data_dict): prompt = data_dict['prompt'] prompt_pad_masks = data_dict['prompt_pad_masks'] prompt_type = data_dict['prompt_type'] prompt_feat = torch.zeros(prompt.shape + (self.hidden_size,), device=prompt.device) for type in self.prompt_types: # get idx idx = prompt_type == getattr(PromptType, type.upper()) if idx.sum() == 0: continue input = prompt[idx] mask = prompt_pad_masks[idx] # encode if type == 'txt': encoder = self.txt_encoder feat = encoder(input.long(), mask) elif type == 'loc': loc_prompts = input[:, :self.dim_loc] if self.dim_loc > 3: feat = self.coord_encoder(loc_prompts[:, :3]).unsqueeze(1) + self.box_encoder(loc_prompts[:, 3:6]).unsqueeze(1) mask[:, 1:] = False else: raise NotImplementedError(f'{type} is not implemented') # put back to orignal prompt prompt_feat[idx] = feat prompt_pad_masks[idx] = mask return prompt_feat, prompt_pad_masks.logical_not() def forward(self, data_dict): input_dict = {} # build query mask = data_dict['query_pad_masks'].logical_not() query_locs = data_dict['query_locs'][:, :, :self.dim_loc] if self.dim_loc > 3: query_pos = self.coord_encoder(query_locs[:, :, :3]) + self.box_encoder(query_locs[:, :, 3:6]) feat = torch.zeros_like(query_pos) pos = query_pos input_dict['query'] = (feat, mask, pos) # encode fts including point, voxel, image, and prompt # the semantics of the attention mask in pytorch (True as masked) is the opposite as Huggingface Transformers (False as masked) fts_locs = data_dict['seg_center'] if self.dim_loc > 3: fts_pos = self.coord_encoder(fts_locs[:, :, :3]) + self.box_encoder(fts_locs[:, :, 3:6]) if self.dim_loc > 3: fts_pos += self.box_encoder(fts_locs[:, :, 3:6]) for input in self.inputs: feat, mask, pos = None, None, None if input == 'prompt': feat, mask = self.prompt_encoder(data_dict) elif input == 'mv': feat = self.mv_encoder(obj_feats = data_dict['mv_seg_fts']) mask = data_dict['mv_seg_pad_masks'].logical_not() pos = fts_pos elif input == 'pc': feat = self.pc_encoder(obj_feats = data_dict['pc_seg_fts']) mask = data_dict['pc_seg_pad_masks'].logical_not() pos = fts_pos elif input == 'voxel': feat = self.voxel_encoder(data_dict['voxel_seg_fts']) mask = data_dict['voxel_seg_pad_masks'].logical_not() pos = fts_pos else: raise NotImplementedError(f"Unknow input type: {input}") input_dict[input] = [feat, mask, pos] # build offline attention mask for guided mask training if self.use_offline_attn_mask: offline_attn_masks = data_dict['offline_attn_mask'] else: offline_attn_masks = None mask_head_partial = None # generate features for spatial attention if self.unified_encoder.spatial_selfattn: pairwise_locs = calc_pairwise_locs(query_locs[:, :, :3], None, pairwise_rel_type=self.pairwise_rel_type, spatial_dist_norm=True, spatial_dim=self.spatial_dim) else: pairwise_locs = None # unified encoding query, predictions_class, predictions_mask = self.unified_encoder(input_dict, pairwise_locs, mask_head_partial) # task head for head in self.heads: if head == 'ground': inputs = [query, data_dict['query_pad_masks']] logits = getattr(self, head + '_head')(*inputs) data_dict[head + '_logits'] = logits data_dict['og3d_logits'] = logits elif head == 'generation': inputs = [query, data_dict['query_pad_masks']] + [None] logits = getattr(self, head + '_head')(*inputs) data_dict[head + '_logits'] = logits else: raise NotImplementedError(f"Unknow head type: {head}") return data_dict