import math from typing import Any, Optional, Tuple, Union from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer import numpy as np import torch import torch.nn as nn import torch.utils.checkpoint from icecream import ic import einops from einops import rearrange def get_abs_pos(abs_pos, tgt_size): # abs_pos: L, C # tgt_size: M # return: M, C src_size = int(math.sqrt(abs_pos.size(0))) tgt_size = int(math.sqrt(tgt_size)) dtype = abs_pos.dtype if src_size != tgt_size: return F.interpolate( abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), size=(tgt_size, tgt_size), mode="bicubic", align_corners=False, ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) else: return abs_pos # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class MplugOwlVisionEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) self.patch_embed = nn.Conv2d( in_channels=3, out_channels=self.hidden_size, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.size(0) image_embeds = self.patch_embed(pixel_values) image_embeds = image_embeds.flatten(2).transpose(1, 2) class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) embeddings = torch.cat([class_embeds, image_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) embeddings = self.pre_layernorm(embeddings) return embeddings class MplugOwlVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) self.dense = nn.Linear(self.hidden_size, self.hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, seq_len, embed_dim = hidden_states.size() mixed_qkv = self.query_key_value(hidden_states) mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( 3, 0, 2, 1, 4 ) # [3, b, np, sq, hn] query_states, key_states, value_states = ( mixed_qkv[0], mixed_qkv[1], mixed_qkv[2], ) # if self.config.use_flash_attn and flash_attn_func is not None: if False: # [b*sq, np, hn] query_states = query_states.permute(0, 2, 1, 3).contiguous() query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) key_states = key_states.permute(0, 2, 1, 3).contiguous() key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) value_states = value_states.permute(0, 2, 1, 3).contiguous() value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) cu_seqlens = torch.arange( 0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device ) context_layer = flash_attn_func( query_states, key_states, value_states, cu_seqlens, cu_seqlens, seq_len, seq_len, self.dropout if self.training else 0.0, softmax_scale=self.scale, causal=False, return_attn_probs=False, ) # [b*sq, np, hn] => [b, sq, np, hn] context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) else: # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = torch.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.dense(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class MplugOwlMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = QuickGELU() self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class MplugOwlVisionEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MplugOwlVisionAttention(config) self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) self.mlp = MplugOwlMLP(config) self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class MplugOwlVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`MplugOwlVisionEncoderLayer`]. Args: config (`MplugOwlVisionConfig`): The corresponding vision configuration for the `MplugOwlEncoder`. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = True def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class MplugOwlVisionModel(PreTrainedModel): main_input_name = "pixel_values" def __init__(self, config): super().__init__(config) self.config = config self.hidden_size = config.hidden_size self.embeddings = MplugOwlVisionEmbeddings(config) self.encoder = MplugOwlVisionEncoder(config) self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) self.post_init() def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings class MplugDocOwlHReducerModel(PreTrainedModel): def __init__(self, config, language_hidden_size): super().__init__(config) self.config = config self.ln_q = torch.nn.LayerNorm(self.config.hidden_size, eps=1e-6) self.conv_shape = (int(self.config.conv_shape.split('x')[0]), int(self.config.conv_shape.split('x')[1])) # self.conv_patch=self.conv_shape[0]*self.conv_shape[1] ## feature interaction with a conv layer self.reducer_before = torch.nn.Sequential( nn.Conv2d(self.config.hidden_size, self.conv_patch*self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True), nn.GELU() ) ## reduce visual feature length with a conv layer self.reducer = nn.Conv2d(self.config.hidden_size, self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True) ## align visual features with language embedding with fc self.visual_fc = torch.nn.Linear(self.config.hidden_size, language_hidden_size) self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) self.post_init() def forward( self, encoder_hidden_states=None ): r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): batch_size is the number of all images (global+crop) in a batch Sequence of hidden-states at the output of the last layer of the encoder. """ encoder_hidden_states = encoder_hidden_states[:,1:,:] # remove the first cls token B, L, C = encoder_hidden_states.shape # B, 1024=(448/14)^2, 1024 ## feature interaction with a conv layer encoder_hidden_states = rearrange(encoder_hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) hidden_states = self.reducer_before(encoder_hidden_states) # B 4D H W/4 ## reduce seq length with a conv layer """hidden_states = hidden_states.flatten(2).transpose(1, 2) # B 4D H W/4 -> B 4D H*W/4 -> B H*W/4 4D hidden_states = rearrange(hidden_states, 'B L (X D) -> B (L X) D', X=self.conv_patch) # B (H W) D hidden_states = rearrange(hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) # B D H W """ hidden_states = rearrange(hidden_states, 'B (X D) H W -> B D H (W X)', X=self.conv_patch) # B 4D H W/4 -> B D H W sequence_output = self.reducer(hidden_states) # B,C,H,W -> B,C,H/conv_shape[1],W/(conv_shape[1]) sequence_output = sequence_output.flatten(2).transpose(1, 2) # B,C,H/conv_shape[1],W/(conv_shape[1]) -> B,C,L/conv_patch -> B,L/conv_patch,C sequence_output = sequence_output.transpose(0, 1).contiguous() # L/conv_patch, B, C ## align visual features with language embedding with fc sequence_output = self.visual_fc(sequence_output) # L/conv_patch, B, h sequence_output = sequence_output.transpose(0, 1).contiguous() # B, s/4, h sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(B, 1, 1)], dim=1) return sequence_output