### 1. Imports and class names setup ### import gradio as gr import os import requests import torch import numpy as np from roboflow import Roboflow import cv2 rf = Roboflow(api_key="gjZE3lykkitagkxHplyJ") project = rf.workspace().project("rideit") model = project.version(1).model from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict file_urls = [ 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: download_file( file_urls[i], f"video.mp4" ) else: download_file( file_urls[i], f"image_{i}.jpg" ) video_path = [['video.mp4']] # Setup class names class_names = ["dented","good"] ### 2. Model and transforms preparation ### # Create EffNetB2 model effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=2, # len(class_names) would also work ) # Load saved weights effnetb2.load_state_dict( torch.load( f="car_model.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### def normalize_2d(matrix): # Only this is changed to use 2-norm put 2 instead of 1 norm = np.linalg.norm(matrix) # normalized matrix matrix = matrix/norm return matrix # Create predict function # Detect the image def detect(imagepath): pix=model.predict(imagepath, confidence=40, overlap=30) pix=pix.json() img=cv2.imread(imagepath) x1,x2,y1,y2=[],[],[],[] for i in pix.keys(): if i=="predictions": for j in pix["predictions"]: for a,b in j.items(): if a=="x": x1.append(b) if a=="y": y1.append(b) if a=="width": x2.append(b) if a=="height": y2.append(b) for p in range(0,len(x1)): x2[p]=x2[p]+x1[p] for p in range(0,len(x1)): y2[p]=y2[p]+x1[p] for (x11,y11,x12,y12) in zip(x1,y1,x2,y2): cv2.rectangle( img, (x11,y11), (x12,y12), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.resize(img,(img.shape[1],img.shape[0])) def predict(img): start_time = timer() # Transform the target image and add a batch dimension img1 = effnetb2_transforms(img).unsqueeze(0) pix = normalize_2d(np.array(img)) #pix1=model.predict(str(image), confidence=40, overlap=30).numpy() # Put model into evaluation mode and turn on inference mode effnetb2.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb2(img1), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() pix=model.predict(frame, confidence=40, overlap=30) pix=pix.json() x1,x2,y1,y2=[],[],[],[] for i in pix.keys(): if i=="predictions": for j in pix["predictions"]: for a,b in j.items(): if a=="x": x1.append(b) if a=="y": y1.append(b) if a=="width": x2.append(b) if a=="height": y2.append(b) for p in range(0,len(x1)): x2[p]=x2[p]+x1[p] for p in range(0,len(x1)): y2[p]=y2[p]+x1[p] for (x11,y11,x12,y12) in zip(x1,y1,x2,y2): cv2.rectangle( img, (x11-200,y11-200), (x12-200,y12-200), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) ### 4. Gradio app ### # Create title, description and article strings title = "Dented car Detector" description = "An EfficientNetB2 feature extractor computer vision model to classify images of dented or good cars." article = "(https://www.learnpytorch.io/)." # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] inputs_video = [ gr.components.Video(type="filepath", label="Input Video"), ] outputs_video = [ gr.components.Image(type="numpy", label="Output Image"), ] # Create the Gradio demo app1 = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=2, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)") ], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory examples=example_list, title=title, description=description, article=article) app2=gr.Interface(fn=detect, inputs=inputs_image, outputs=outputs_image, title=title) app3=gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, examples=video_path, cache_examples=False, ) demo = gr.TabbedInterface([app1, app2,app3], ["Classify", "Detect","Video Interface"]) # Launch the demo! demo.launch()