File size: 6,494 Bytes
f05bf05
 
 
d1f040d
f05bf05
d1f040d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f05bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1f040d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5dc6b
d1f040d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f05bf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54cd385
 
f05bf05
 
 
afb6570
f05bf05
d1f040d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f05bf05
d1f040d
f05bf05
 
 
 
 
 
 
d1f040d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f05bf05
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
### 1. Imports and class names setup ###
import gradio as gr
import os
import requests
import torch
import numpy as np
from roboflow import Roboflow
import cv2

rf = Roboflow(api_key="PO54lH9XBJxPjmlAvQsW")
project = rf.workspace().project("no_glasses")
model = project.version(1).model

file_urls = [
    'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
]


def download_file(url, save_name):
    url = url
    if not os.path.exists(save_name):
        file = requests.get(url)
        open(save_name, 'wb').write(file.content)

for i, url in enumerate(file_urls):
    if 'mp4' in file_urls[i]:
        download_file(
            file_urls[i],
            f"video.mp4"
        )
    else:
        download_file(
            file_urls[i],
            f"image_{i}.jpg"
        )


video_path = [['video.mp4']]



from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict

# Setup class names
class_names = ["Yes","No"]

### 2. Model and transforms preparation ###

# Create EffNetB2 model
effnetb2, effnetb2_transforms = create_effnetb2_model(
    num_classes=2, # len(class_names) would also work
)

# Load saved weights
effnetb2.load_state_dict(
    torch.load(
        f="glass_model.pth",
        map_location=torch.device("cpu"),  # load to CPU
    )
)





def detect(imagepath):

    pix=model.predict(imagepath, confidence=40, overlap=30)
    pix=pix.json()
    img=cv2.imread(imagepath)

    x1,x2,y1,y2=[],[],[],[]
    for i in pix.keys():
        if i=="predictions":
            for j in pix["predictions"]:
                for a,b in j.items():
                    if a=="x":
                        x1.append(b)
                    if a=="y":
                        y1.append(b)
                    if a=="width":
                        x2.append(b)
                    if a=="height":
                        y2.append(b)



    for p in range(0,len(x1)):
        x2[p]=x2[p]+x1[p]

    for p in range(0,len(x1)):
        y2[p]=y2[p]+x1[p]

    for (x11,y11,x12,y12) in zip(x1,y1,x2,y2):
        cv2.rectangle(
                img,
                (x11,y11),
                (x12,y12),
                color=(0, 0, 255),
                thickness=2,
                lineType=cv2.LINE_AA
            )
    
    return img
    #cv2.imshow("kamehamehaa",img)







def show_preds_video(video_path):
    cap = cv2.VideoCapture(video_path)
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret:
            frame_copy = frame.copy()
            pix=model.predict(frame, confidence=40, overlap=30)
            pix=pix.json()
            x1,x2,y1,y2=[],[],[],[]
            for i in pix.keys():
                if i=="predictions":
                    for j in pix["predictions"]:
                        for a,b in j.items():
                            if a=="x":
                                x1.append(b)
                            if a=="y":
                                y1.append(b)
                            if a=="width":
                                x2.append(b)
                            if a=="height":
                                y2.append(b)



            for p in range(0,len(x1)):
                x2[p]=x2[p]+x1[p]

            for p in range(0,len(x1)):
                y2[p]=y2[p]+x1[p]

            for (x11,y11,x12,y12) in zip(x1,y1,x2,y2):
                cv2.rectangle(
                        img,
                        (x11,y11),
                        (x12,y12),
                        color=(0, 0, 255),
                        thickness=2,
                        lineType=cv2.LINE_AA
                    )

            
            yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)







### 3. Predict function ###

# Create predict function
def predict(img) -> Tuple[Dict, float]:
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = timer()

    # Transform the target image and add a batch dimension
    img = effnetb2_transforms(img).unsqueeze(0)

    # Put model into evaluation mode and turn on inference mode
    effnetb2.eval()
    with torch.inference_mode():
        # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
        pred_probs = torch.softmax(effnetb2(img), dim=1)

    # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
    pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}

    # Calculate the prediction time
    pred_time = round(timer() - start_time, 5)

    # Return the prediction dictionary and prediction time
    return pred_labels_and_probs, pred_time

### 4. Gradio app ###

# Create title, description and article strings
title = "Safety Glasses Detector"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of Safety glasses at construction sites"
article = "(https://www.learnpytorch.io/)."

# Create examples list from "examples/" directory
#example_list = [["examples/" + example] for example in os.listdir("examples")]


inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]

outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]


inputs_video = [
    gr.components.Video(type="filepath", label="Input Video"),

]
outputs_video = [
    gr.components.Image(type="numpy", label="Output Image"),
]



# Create the Gradio demo
app1 = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=gr.Image(type="pil"), # what are the inputs?
                    outputs=[gr.Label(num_top_classes=2, label="Predictions"), # what are the outputs?
                             gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
                    title=title,
                    description=description,
                    article=article)

app2=gr.Interface(fn=detect,
                 inputs=inputs_image,
                 outputs=outputs_image,
                 title=title)
app3=gr.Interface(
    fn=show_preds_video,
    inputs=inputs_video,
    outputs=outputs_video,
    examples=video_path,
    cache_examples=False,
)

demo = gr.TabbedInterface([app1, app2,app3], ["Classify", "Detect","Video Interface"])


# Launch the demo!
demo.launch()