File size: 29,252 Bytes
a66edf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# coding=utf-8
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch JapaneseStableLMAlpha model. """
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_japanese_stablelm_alpha import JapaneseStableLMAlphaConfig


logger = logging.get_logger(__name__)


class JapaneseStableLMAlphaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = JapaneseStableLMAlphaConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            if module.bias is not None:
                module.bias.data.zero_()
            if module.weight is not None:
                module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, JapaneseStableLMAlphaModel):
            module.gradient_checkpointing = value


class JapaneseStableLMAlphaModel(JapaneseStableLMAlphaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_in

    def set_input_embeddings(self, value):
        self.embed_in = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * self.config.num_hidden_layers)
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # Attention mask.
        if attention_mask is not None:
            assert batch_size > 0, "batch_size has to be defined and > 0"
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and the dtype's smallest value for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        if inputs_embeds is None:
            inputs_embeds = self.embed_in(input_ids)

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        presents = () if use_cache else None
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for layer_past
                        return module(*inputs, use_cache, None, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    head_mask[i],
                )
            else:
                outputs = layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    head_mask=head_mask[i],
                    layer_past=layer_past,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )
            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)
            if output_attentions:
                all_attentions = all_attentions + (outputs[2 if use_cache else 1],)

        hidden_states = self.final_layer_norm(hidden_states)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


class DecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.use_parallel_residual = config.use_parallel_residual
        self.input_layernorm = nn.LayerNorm(
            config.hidden_size,
            eps=config.layer_norm_eps,
            elementwise_affine=False,
        )
        self.post_attention_layernorm = nn.LayerNorm(
            config.hidden_size,
            eps=config.layer_norm_eps
        )
        self.attention = Attention(config)
        self.mlp = MLP(config)

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
    ):
        attention_layer_outputs = self.attention(
            self.input_layernorm(hidden_states),
            attention_mask=attention_mask,
            position_ids=position_ids,
            layer_past=layer_past,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attention_layer_outputs[0]  # output_attn: attn_output, present, (attn_weights)
        outputs = attention_layer_outputs[1:]

        mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
        hidden_states = hidden_states + mlp_output + attn_output

        if use_cache:
            outputs = (hidden_states,) + outputs  # hidden_states, present, (attn_weights)
        else:
            outputs = (hidden_states,) + outputs[1:]  # hidden_states, (attn_weights)

        return outputs


class MLP(nn.Module):
    def __init__(self, config: JapaneseStableLMAlphaConfig):
        super().__init__()
        hidden_size = config.hidden_size
        multiple_of = 256
        ff_dim = int(8 * hidden_size / 3)
        intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)

        self.packed_input_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
        self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.act = nn.SiLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ff, ff_gate = self.packed_input_proj(x).chunk(2, dim=-1)
        return self.out_proj(ff * self.act(ff_gate))


class RotaryEmbedding(torch.nn.Module):
    """Based on Tri Dao's XPos: https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/layers/rotary.py"""
    def __init__(
        self,
        dim: int,
        max_position_embeddings: int,
        base: int = 10_000,
        scale_base: int = 512,
        device: str = None
    ):
        super().__init__()
        self.dim = dim
        self.seq_len_cached = max_position_embeddings

        # Set up `inv_freq` term
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
        self.register_buffer("inv_freq", inv_freq)

        # Set up `scale` term
        self.scale_base = scale_base
        scale = (
            (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
            if scale_base is not None else None
        )
        self.register_buffer("scale", scale)

        # Seet up `cos..` and `sin...` cache terms
        t = torch.arange(self.seq_len_cached, device=device, dtype=torch.float32)
        freqs = torch.outer(t, self.inv_freq)
        # freqs = torch.cat((freqs, freqs), dim=-1)
        seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
        power = (seq_range - self.seq_len_cached // 2) / self.scale_base
        scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
        # scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
        self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
        self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
        self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
        self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)

    def forward(self, x, seq_len=None):
        if seq_len > self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
            freqs = torch.outer(t, self.inv_freq)
            freqs = torch.cat((freqs, freqs), dim=-1)
            seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
            power = (seq_range - self.seq_len_cached // 2) / self.scale_base
            scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
            scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
            self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
            self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
            self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
            self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
        return (
            self.cos_cached[:seq_len, ...],
            self.sin_cached[:seq_len, ...],
            self.cos_k_cached[:seq_len, ...],
            self.sin_k_cached[:seq_len, ...],
        )


def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids, cos_k=None, sin_k=None):
    """
    q, k: [bs, num_heads, seq_len, rot_dim]
    cos, sin: [seq_len, rot_dim / 2]
    position_ids: [bs, seq_len]
    """
    # print(f"q: {q.shape}, k: {k.shape}, cos: {cos.shape}, sin: {sin.shape}, position_ids: {position_ids.shape}")
    import einops
    cos = einops.repeat(cos, 's r -> s (2 r)')
    sin = einops.repeat(sin, 's r -> s (2 r)')
    cos_k = einops.repeat(cos_k, 's r -> s (2 r)')
    sin_k = einops.repeat(sin_k, 's r -> s (2 r)')
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, rot_dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, rot_dim]
    cos_k = cos_k[position_ids].unsqueeze(1)  # [bs, 1, seq_len, rot_dim]
    sin_k = sin_k[position_ids].unsqueeze(1)  # [bs, 1, seq_len, rot_dim]

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos_k) + (rotate_half(k) * sin_k)
    return q_embed, k_embed


class Attention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        if self.hidden_size % self.num_attention_heads != 0:
            raise ValueError(
                "The hidden size is not divisble by the number of attention heads! Make sure to update them"
            )
        self.head_size = self.hidden_size // self.num_attention_heads

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
                1, 1, max_positions, max_positions
            ),
            persistent=False,
        )
        self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)

        self.rotary_ndims = int(self.head_size * config.rotary_pct)
        self.rotary_emb = RotaryEmbedding(
            self.rotary_ndims,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rotary_emb_base,
            scale_base=config.rotary_scale_base,
        )

        self.register_buffer(
            "norm_factor",
            torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()),
            persistent=False,
        )

        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        position_ids: torch.LongTensor,
        head_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ):
        has_layer_past = layer_past is not None

        # Compute QKV
        # Attention heads [batch, seq_len, hidden_size]
        #   --> [batch, seq_len, (np * 3 * head_size)]
        qkv = self.query_key_value(hidden_states)

        # [batch, seq_len, (num_heads * 3 * head_size)]
        #   --> [batch, seq_len, num_heads, 3 * head_size]
        new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
        qkv = qkv.view(*new_qkv_shape)

        # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
        query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
        key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
        value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)

        # Compute rotary embeddings on rotary_ndims
        query_rot = query[..., : self.rotary_ndims]
        query_pass = query[..., self.rotary_ndims :]
        key_rot = key[..., : self.rotary_ndims]
        key_pass = key[..., self.rotary_ndims :]

        # Compute token offset for rotary embeddings (when decoding)
        kv_seq_len = key.shape[-2]
        if has_layer_past:
            kv_seq_len += layer_past[0].shape[-2]

        # Add rotary embeddings to query and key
        # TODO: Check if using xpos
        cos, sin, cos_k, sin_k = self.rotary_emb(value, seq_len=kv_seq_len)
        query, key = apply_rotary_pos_emb(
            query_rot, key_rot, cos, sin, position_ids, cos_k=cos_k, sin_k=sin_k)

        query = torch.cat((query, query_pass), dim=-1)
        key = torch.cat((key, key_pass), dim=-1)

        # Cache QKV values
        if has_layer_past:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)
        present = (key, value) if use_cache else None

        # Compute attention
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        # Merge attn_head_size dim and num_attn_heads dim into hidden dim
        # [bs, seq_len, num_attention_heads, attn_head_size]
        attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
        attn_output = attn_output.view(attn_output.size(0), attn_output.size(1), self.num_attention_heads * self.head_size)

        attn_output = self.dense(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
        # compute causal mask from causal mask buffer

        batch_size, num_attention_heads, query_length, attn_head_size = query.size()
        key_length = key.size(-2)

        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]

        query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
        key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
        attn_scores = torch.zeros(
            batch_size * num_attention_heads,
            query_length,
            key_length,
            dtype=query.dtype,
            device=key.device,
        )
        attn_scores = torch.baddbmm(
            attn_scores,
            query,
            key.transpose(1, 2),
            beta=1.0,
            alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
        )
        attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)

        mask_value = torch.finfo(attn_scores.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype, device=attn_scores.device)
        attn_scores = torch.where(causal_mask, attn_scores, mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_scores = attn_scores + attention_mask

        # NOTE: Upcast to float32
        attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(value)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)
        return attn_output, attn_weights


def attention_mask_func(attention_scores, ltor_mask):
    attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
    return attention_scores


class JapaneseStableLMAlphaForCausalLM(JapaneseStableLMAlphaPreTrainedModel):
    _tied_weights_keys = ["embed_out.weight"]

    def __init__(self, config):
        super().__init__(config)

        self.transformer = JapaneseStableLMAlphaModel(config)
        self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.embed_out

    def set_output_embeddings(self, new_embeddings):
        self.embed_out = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Example:

        ```python
        >>> import torch
        >>> from transformers import LlamaTokenizer, JapaneseStableLMAlphaForCausalLM, JapaneseStableLMAlphaConfig
        
        >>> tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1")
        >>> config = JapaneseStableLMAlphaConfig.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b")
        >>> config.is_decoder = True
        >>> model = JapaneseStableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b", config=config, trust_remote_code=True)

        >>> inputs = tokenizer("日本語の美しいところは、", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> prediction_logits = outputs.logits
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        lm_logits = self.embed_out(hidden_states)

        lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shift_logits = lm_logits[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithPast(
            loss=lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        input_shape = input_ids.shape

        # cut decoder_input_ids if past is used
        if past_key_values and past_key_values[0] is not None:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "past_key_values": past_key_values,
                "position_ids": position_ids,
            }
        )

        return model_inputs

    def _reorder_cache(self, past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
            )
        return reordered_past