MosesLM-13B-chat / attn_and_long_ctx_patches.py
Moses25's picture
add gradio file
4ba4c08
raw
history blame contribute delete
No virus
9.69 kB
import torch
from torch import nn
from typing import Optional, Tuple, Union
import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half
import math
try:
from xformers import ops as xops
except ImportError:
xops = None
print(
"Xformers is not installed correctly. If you want to use memory_efficient_attention use the following command to install Xformers\npip install xformers."
)
STORE_KV_BEFORE_ROPE = False
USE_MEM_EFF_ATTENTION = False
ALPHA = 1.0
AUTO_COEFF = 1.0
SCALING_FACTOR = None
def apply_rotary_pos_emb_single(q, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed
def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if STORE_KV_BEFORE_ROPE is False:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
else:
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids)
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=cos.device)
position_ids = position_ids.unsqueeze(0).view(-1, kv_seq_len)
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, position_ids)
if xops is not None and USE_MEM_EFF_ATTENTION:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_bias = None if (query_states.size(1)==1 and key_states.size(1)>1) else xops.LowerTriangularMask()
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=attn_bias, p=0)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.ntk_inv_freq.to(device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=None):
self.alpha = ALPHA
if SCALING_FACTOR is None:
self.scaling_factor = scaling_factor or 1.0
else:
self.scaling_factor = SCALING_FACTOR
if isinstance(ALPHA,(float,int)):
base = base * ALPHA ** (dim / (dim-2))
self.base = base
elif ALPHA=='auto':
self.base = base
else:
raise ValueError(ALPHA)
old_init(self, dim, max_position_embeddings, base, device)
self.ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self._set_cos_sin_cache = _set_cos_sin_cache
self._set_cos_sin_cache(
self, seq_len=max_position_embeddings, device=self.ntk_inv_freq.device, dtype=torch.get_default_dtype()
)
def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
if isinstance(self.alpha,(float,int)):
self._set_cos_sin_cache(self, seq_len=seq_len, device=x.device, dtype=x.dtype)
elif self.alpha=='auto':
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
t = t / self.scaling_factor
dim = self.dim
alpha = (seq_len / (self.max_position_embeddings/2) - 1) * AUTO_COEFF
base = self.base * alpha ** (dim / (dim-2))
ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))
freqs = torch.einsum("i,j->ij", t, ntk_inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
def apply_attention_patch(
use_memory_efficient_attention=False,
store_kv_before_rope=False
):
global USE_MEM_EFF_ATTENTION, STORE_KV_BEFORE_ROPE
if use_memory_efficient_attention is True and xops is not None:
USE_MEM_EFF_ATTENTION = use_memory_efficient_attention
print("USE_MEM_EFF_ATTENTION: ",USE_MEM_EFF_ATTENTION)
STORE_KV_BEFORE_ROPE = store_kv_before_rope
print("STORE_KV_BEFORE_ROPE:", STORE_KV_BEFORE_ROPE)
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
def apply_ntk_scaling_patch(alpha: Union[float,str], scaling_factor: Optional[float] = None):
global ALPHA
global SCALING_FACTOR
ALPHA = alpha
SCALING_FACTOR = scaling_factor
try:
ALPHA = float(ALPHA)
except ValueError:
if ALPHA!="auto":
raise ValueError(f"Alpha can only be a float or 'auto', but given {ALPHA}")
print(f"Apply NTK scaling with ALPHA={ALPHA}")
if scaling_factor is None:
print(f"The value of scaling factor will be read from model config file, or set to 1.")
else:
print(f"Warning: scaling factor is set to {SCALING_FACTOR}. \
If you set the value by hand, do not forget to update \
max_position_embeddings in the model config file.")
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init
if hasattr(transformers.models.llama.modeling_llama,'LlamaLinearScalingRotaryEmbedding'):
transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__ = adaptive_ntk_init
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward