file_path
stringlengths
22
162
content
stringlengths
19
501k
size
int64
19
501k
lang
stringclasses
1 value
avg_line_length
float64
6.33
100
max_line_length
int64
18
935
alphanum_fraction
float64
0.34
0.93
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/rl_task_env.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import gymnasium as gym import math import numpy as np import torch from collections.abc import Sequence from typing import Any, ClassVar from omni.isaac.version import get_version from omni.isaac.orbit.managers import CommandManager, CurriculumManager, RewardManager, TerminationManager from .base_env import BaseEnv, VecEnvObs from .rl_task_env_cfg import RLTaskEnvCfg VecEnvStepReturn = tuple[VecEnvObs, torch.Tensor, torch.Tensor, torch.Tensor, dict] """The environment signals processed at the end of each step. The tuple contains batched information for each sub-environment. The information is stored in the following order: 1. **Observations**: The observations from the environment. 2. **Rewards**: The rewards from the environment. 3. **Terminated Dones**: Whether the environment reached a terminal state, such as task success or robot falling etc. 4. **Timeout Dones**: Whether the environment reached a timeout state, such as end of max episode length. 5. **Extras**: A dictionary containing additional information from the environment. """ class RLTaskEnv(BaseEnv, gym.Env): """The superclass for reinforcement learning-based environments. This class inherits from :class:`BaseEnv` and implements the core functionality for reinforcement learning-based environments. It is designed to be used with any RL library. The class is designed to be used with vectorized environments, i.e., the environment is expected to be run in parallel with multiple sub-environments. The number of sub-environments is specified using the ``num_envs``. Each observation from the environment is a batch of observations for each sub- environments. The method :meth:`step` is also expected to receive a batch of actions for each sub-environment. While the environment itself is implemented as a vectorized environment, we do not inherit from :class:`gym.vector.VectorEnv`. This is mainly because the class adds various methods (for wait and asynchronous updates) which are not required. Additionally, each RL library typically has its own definition for a vectorized environment. Thus, to reduce complexity, we directly use the :class:`gym.Env` over here and leave it up to library-defined wrappers to take care of wrapping this environment for their agents. Note: For vectorized environments, it is recommended to **only** call the :meth:`reset` method once before the first call to :meth:`step`, i.e. after the environment is created. After that, the :meth:`step` function handles the reset of terminated sub-environments. This is because the simulator does not support resetting individual sub-environments in a vectorized environment. """ is_vector_env: ClassVar[bool] = True """Whether the environment is a vectorized environment.""" metadata: ClassVar[dict[str, Any]] = { "render_modes": [None, "human", "rgb_array"], "isaac_sim_version": get_version(), } """Metadata for the environment.""" cfg: RLTaskEnvCfg """Configuration for the environment.""" def __init__(self, cfg: RLTaskEnvCfg, render_mode: str | None = None, **kwargs): """Initialize the environment. Args: cfg: The configuration for the environment. render_mode: The render mode for the environment. Defaults to None, which is similar to ``"human"``. """ # initialize the base class to setup the scene. super().__init__(cfg=cfg) # store the render mode self.render_mode = render_mode # initialize data and constants # -- counter for curriculum self.common_step_counter = 0 # -- init buffers self.episode_length_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # setup the action and observation spaces for Gym self._configure_gym_env_spaces() # perform events at the start of the simulation if "startup" in self.event_manager.available_modes: self.event_manager.apply(mode="startup") # print the environment information print("[INFO]: Completed setting up the environment...") """ Properties. """ @property def max_episode_length_s(self) -> float: """Maximum episode length in seconds.""" return self.cfg.episode_length_s @property def max_episode_length(self) -> int: """Maximum episode length in environment steps.""" return math.ceil(self.max_episode_length_s / self.step_dt) """ Operations - Setup. """ def load_managers(self): # note: this order is important since observation manager needs to know the command and action managers # and the reward manager needs to know the termination manager # -- command manager self.command_manager: CommandManager = CommandManager(self.cfg.commands, self) print("[INFO] Command Manager: ", self.command_manager) # call the parent class to load the managers for observations and actions. super().load_managers() # prepare the managers # -- termination manager self.termination_manager = TerminationManager(self.cfg.terminations, self) print("[INFO] Termination Manager: ", self.termination_manager) # -- reward manager self.reward_manager = RewardManager(self.cfg.rewards, self) print("[INFO] Reward Manager: ", self.reward_manager) # -- curriculum manager self.curriculum_manager = CurriculumManager(self.cfg.curriculum, self) print("[INFO] Curriculum Manager: ", self.curriculum_manager) """ Operations - MDP """ def step(self, action: torch.Tensor) -> VecEnvStepReturn: """Execute one time-step of the environment's dynamics and reset terminated environments. Unlike the :class:`BaseEnv.step` class, the function performs the following operations: 1. Process the actions. 2. Perform physics stepping. 3. Perform rendering if gui is enabled. 4. Update the environment counters and compute the rewards and terminations. 5. Reset the environments that terminated. 6. Compute the observations. 7. Return the observations, rewards, resets and extras. Args: action: The actions to apply on the environment. Shape is (num_envs, action_dim). Returns: A tuple containing the observations, rewards, resets (terminated and truncated) and extras. """ # process actions self.action_manager.process_action(action) # perform physics stepping for _ in range(self.cfg.decimation): # set actions into buffers self.action_manager.apply_action() # set actions into simulator self.scene.write_data_to_sim() # simulate self.sim.step(render=False) # update buffers at sim dt self.scene.update(dt=self.physics_dt) # perform rendering if gui is enabled if self.sim.has_gui(): self.sim.render() # post-step: # -- update env counters (used for curriculum generation) self.episode_length_buf += 1 # step in current episode (per env) self.common_step_counter += 1 # total step (common for all envs) # -- check terminations self.reset_buf = self.termination_manager.compute() self.reset_terminated = self.termination_manager.terminated self.reset_time_outs = self.termination_manager.time_outs # -- reward computation self.reward_buf = self.reward_manager.compute(dt=self.step_dt) # -- reset envs that terminated/timed-out and log the episode information reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self._reset_idx(reset_env_ids) # -- update command self.command_manager.compute(dt=self.step_dt) # -- step interval events if "interval" in self.event_manager.available_modes: self.event_manager.apply(mode="interval", dt=self.step_dt) # -- compute observations # note: done after reset to get the correct observations for reset envs self.obs_buf = self.observation_manager.compute() # return observations, rewards, resets and extras return self.obs_buf, self.reward_buf, self.reset_terminated, self.reset_time_outs, self.extras def render(self) -> np.ndarray | None: """Run rendering without stepping through the physics. By convention, if mode is: - **human**: Render to the current display and return nothing. Usually for human consumption. - **rgb_array**: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video. Returns: The rendered image as a numpy array if mode is "rgb_array". Otherwise, returns None. Raises: RuntimeError: If mode is set to "rgb_data" and simulation render mode does not support it. In this case, the simulation render mode must be set to ``RenderMode.PARTIAL_RENDERING`` or ``RenderMode.FULL_RENDERING``. NotImplementedError: If an unsupported rendering mode is specified. """ # run a rendering step of the simulator self.sim.render() # decide the rendering mode if self.render_mode == "human" or self.render_mode is None: return None elif self.render_mode == "rgb_array": # check that if any render could have happened if self.sim.render_mode.value < self.sim.RenderMode.PARTIAL_RENDERING.value: raise RuntimeError( f"Cannot render '{self.render_mode}' when the simulation render mode is" f" '{self.sim.render_mode.name}'. Please set the simulation render mode to:" f"'{self.sim.RenderMode.PARTIAL_RENDERING.name}' or '{self.sim.RenderMode.FULL_RENDERING.name}'." ) # create the annotator if it does not exist if not hasattr(self, "_rgb_annotator"): import omni.replicator.core as rep # create render product self._render_product = rep.create.render_product( self.cfg.viewer.cam_prim_path, self.cfg.viewer.resolution ) # create rgb annotator -- used to read data from the render product self._rgb_annotator = rep.AnnotatorRegistry.get_annotator("rgb", device="cpu") self._rgb_annotator.attach([self._render_product]) # obtain the rgb data rgb_data = self._rgb_annotator.get_data() # convert to numpy array rgb_data = np.frombuffer(rgb_data, dtype=np.uint8).reshape(*rgb_data.shape) # return the rgb data # note: initially the renerer is warming up and returns empty data if rgb_data.size == 0: return np.zeros((self.cfg.viewer.resolution[1], self.cfg.viewer.resolution[0], 3), dtype=np.uint8) else: return rgb_data[:, :, :3] else: raise NotImplementedError( f"Render mode '{self.render_mode}' is not supported. Please use: {self.metadata['render_modes']}." ) def close(self): if not self._is_closed: # destructor is order-sensitive del self.command_manager del self.reward_manager del self.termination_manager del self.curriculum_manager # call the parent class to close the environment super().close() """ Helper functions. """ def _configure_gym_env_spaces(self): """Configure the action and observation spaces for the Gym environment.""" # observation space (unbounded since we don't impose any limits) self.single_observation_space = gym.spaces.Dict() for group_name, group_term_names in self.observation_manager.active_terms.items(): # extract quantities about the group has_concatenated_obs = self.observation_manager.group_obs_concatenate[group_name] group_dim = self.observation_manager.group_obs_dim[group_name] group_term_dim = self.observation_manager.group_obs_term_dim[group_name] # check if group is concatenated or not # if not concatenated, then we need to add each term separately as a dictionary if has_concatenated_obs: self.single_observation_space[group_name] = gym.spaces.Box(low=-np.inf, high=np.inf, shape=group_dim) else: self.single_observation_space[group_name] = gym.spaces.Dict({ term_name: gym.spaces.Box(low=-np.inf, high=np.inf, shape=term_dim) for term_name, term_dim in zip(group_term_names, group_term_dim) }) # action space (unbounded since we don't impose any limits) action_dim = sum(self.action_manager.action_term_dim) self.single_action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(action_dim,)) # batch the spaces for vectorized environments self.observation_space = gym.vector.utils.batch_space(self.single_observation_space, self.num_envs) self.action_space = gym.vector.utils.batch_space(self.single_action_space, self.num_envs) def _reset_idx(self, env_ids: Sequence[int]): """Reset environments based on specified indices. Args: env_ids: List of environment ids which must be reset """ # update the curriculum for environments that need a reset self.curriculum_manager.compute(env_ids=env_ids) # reset the internal buffers of the scene elements self.scene.reset(env_ids) # apply events such as randomizations for environments that need a reset if "reset" in self.event_manager.available_modes: self.event_manager.apply(env_ids=env_ids, mode="reset") # iterate over all managers and reset them # this returns a dictionary of information which is stored in the extras # note: This is order-sensitive! Certain things need be reset before others. self.extras["log"] = dict() # -- observation manager info = self.observation_manager.reset(env_ids) self.extras["log"].update(info) # -- action manager info = self.action_manager.reset(env_ids) self.extras["log"].update(info) # -- rewards manager info = self.reward_manager.reset(env_ids) self.extras["log"].update(info) # -- curriculum manager info = self.curriculum_manager.reset(env_ids) self.extras["log"].update(info) # -- command manager info = self.command_manager.reset(env_ids) self.extras["log"].update(info) # -- event manager info = self.event_manager.reset(env_ids) self.extras["log"].update(info) # -- termination manager info = self.termination_manager.reset(env_ids) self.extras["log"].update(info) # reset the episode length buffer self.episode_length_buf[env_ids] = 0
15,635
Python
44.321739
117
0.649376
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/base_env.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins import torch import warnings from collections.abc import Sequence from typing import Any, Dict import carb import omni.isaac.core.utils.torch as torch_utils from omni.isaac.orbit.managers import ActionManager, EventManager, ObservationManager from omni.isaac.orbit.scene import InteractiveScene from omni.isaac.orbit.sim import SimulationContext from omni.isaac.orbit.utils.timer import Timer from .base_env_cfg import BaseEnvCfg from .ui import ViewportCameraController VecEnvObs = Dict[str, torch.Tensor | Dict[str, torch.Tensor]] """Observation returned by the environment. The observations are stored in a dictionary. The keys are the group to which the observations belong. This is useful for various setups such as reinforcement learning with asymmetric actor-critic or multi-agent learning. For non-learning paradigms, this may include observations for different components of a system. Within each group, the observations can be stored either as a dictionary with keys as the names of each observation term in the group, or a single tensor obtained from concatenating all the observation terms. For example, for asymmetric actor-critic, the observation for the actor and the critic can be accessed using the keys ``"policy"`` and ``"critic"`` respectively. Note: By default, most learning frameworks deal with default and privileged observations in different ways. This handling must be taken care of by the wrapper around the :class:`RLTaskEnv` instance. For included frameworks (RSL-RL, RL-Games, skrl), the observations must have the key "policy". In case, the key "critic" is also present, then the critic observations are taken from the "critic" group. Otherwise, they are the same as the "policy" group. """ class BaseEnv: """The base environment encapsulates the simulation scene and the environment managers. While a simulation scene or world comprises of different components such as the robots, objects, and sensors (cameras, lidars, etc.), the environment is a higher level abstraction that provides an interface for interacting with the simulation. The environment is comprised of the following components: * **Scene**: The scene manager that creates and manages the virtual world in which the robot operates. This includes defining the robot, static and dynamic objects, sensors, etc. * **Observation Manager**: The observation manager that generates observations from the current simulation state and the data gathered from the sensors. These observations may include privileged information that is not available to the robot in the real world. Additionally, user-defined terms can be added to process the observations and generate custom observations. For example, using a network to embed high-dimensional observations into a lower-dimensional space. * **Action Manager**: The action manager that processes the raw actions sent to the environment and converts them to low-level commands that are sent to the simulation. It can be configured to accept raw actions at different levels of abstraction. For example, in case of a robotic arm, the raw actions can be joint torques, joint positions, or end-effector poses. Similarly for a mobile base, it can be the joint torques, or the desired velocity of the floating base. * **Event Manager**: The event manager orchestrates operations triggered based on simulation events. This includes resetting the scene to a default state, applying random pushes to the robot at different intervals of time, or randomizing properties such as mass and friction coefficients. This is useful for training and evaluating the robot in a variety of scenarios. The environment provides a unified interface for interacting with the simulation. However, it does not include task-specific quantities such as the reward function, or the termination conditions. These quantities are often specific to defining Markov Decision Processes (MDPs) while the base environment is agnostic to the MDP definition. The environment steps forward in time at a fixed time-step. The physics simulation is decimated at a lower time-step. This is to ensure that the simulation is stable. These two time-steps can be configured independently using the :attr:`BaseEnvCfg.decimation` (number of simulation steps per environment step) and the :attr:`BaseEnvCfg.sim.dt` (physics time-step) parameters. Based on these parameters, the environment time-step is computed as the product of the two. The two time-steps can be obtained by querying the :attr:`physics_dt` and the :attr:`step_dt` properties respectively. """ def __init__(self, cfg: BaseEnvCfg): """Initialize the environment. Args: cfg: The configuration object for the environment. Raises: RuntimeError: If a simulation context already exists. The environment must always create one since it configures the simulation context and controls the simulation. """ # store inputs to class self.cfg = cfg # initialize internal variables self._is_closed = False # create a simulation context to control the simulator if SimulationContext.instance() is None: self.sim = SimulationContext(self.cfg.sim) else: raise RuntimeError("Simulation context already exists. Cannot create a new one.") # print useful information print("[INFO]: Base environment:") print(f"\tEnvironment device : {self.device}") print(f"\tPhysics step-size : {self.physics_dt}") print(f"\tRendering step-size : {self.physics_dt * self.cfg.sim.substeps}") print(f"\tEnvironment step-size : {self.step_dt}") print(f"\tPhysics GPU pipeline : {self.cfg.sim.use_gpu_pipeline}") print(f"\tPhysics GPU simulation: {self.cfg.sim.physx.use_gpu}") # generate scene with Timer("[INFO]: Time taken for scene creation"): self.scene = InteractiveScene(self.cfg.scene) print("[INFO]: Scene manager: ", self.scene) # set up camera viewport controller # viewport is not available in other rendering modes so the function will throw a warning # FIXME: This needs to be fixed in the future when we unify the UI functionalities even for # non-rendering modes. if self.sim.render_mode >= self.sim.RenderMode.PARTIAL_RENDERING: self.viewport_camera_controller = ViewportCameraController(self, self.cfg.viewer) else: self.viewport_camera_controller = None # play the simulator to activate physics handles # note: this activates the physics simulation view that exposes TensorAPIs # note: when started in extension mode, first call sim.reset_async() and then initialize the managers if builtins.ISAAC_LAUNCHED_FROM_TERMINAL is False: print("[INFO]: Starting the simulation. This may take a few seconds. Please wait...") with Timer("[INFO]: Time taken for simulation start"): self.sim.reset() # add timeline event to load managers self.load_managers() # extend UI elements # we need to do this here after all the managers are initialized # this is because they dictate the sensors and commands right now if self.sim.has_gui() and self.cfg.ui_window_class_type is not None: self._window = self.cfg.ui_window_class_type(self, window_name="Orbit") else: # if no window, then we don't need to store the window self._window = None # allocate dictionary to store metrics self.extras = {} def __del__(self): """Cleanup for the environment.""" self.close() """ Properties. """ @property def num_envs(self) -> int: """The number of instances of the environment that are running.""" return self.scene.num_envs @property def physics_dt(self) -> float: """The physics time-step (in s). This is the lowest time-decimation at which the simulation is happening. """ return self.cfg.sim.dt @property def step_dt(self) -> float: """The environment stepping time-step (in s). This is the time-step at which the environment steps forward. """ return self.cfg.sim.dt * self.cfg.decimation @property def device(self): """The device on which the environment is running.""" return self.sim.device """ Operations - Setup. """ def load_managers(self): """Load the managers for the environment. This function is responsible for creating the various managers (action, observation, events, etc.) for the environment. Since the managers require access to physics handles, they can only be created after the simulator is reset (i.e. played for the first time). .. note:: In case of standalone application (when running simulator from Python), the function is called automatically when the class is initialized. However, in case of extension mode, the user must call this function manually after the simulator is reset. This is because the simulator is only reset when the user calls :meth:`SimulationContext.reset_async` and it isn't possible to call async functions in the constructor. """ # check the configs if self.cfg.randomization is not None: msg = ( "The 'randomization' attribute is deprecated and will be removed in a future release. " "Please use the 'events' attribute to configure the randomization settings." ) warnings.warn(msg, category=DeprecationWarning) carb.log_warn(msg) # set the randomization as events (for backward compatibility) self.cfg.events = self.cfg.randomization # prepare the managers # -- action manager self.action_manager = ActionManager(self.cfg.actions, self) print("[INFO] Action Manager: ", self.action_manager) # -- observation manager self.observation_manager = ObservationManager(self.cfg.observations, self) print("[INFO] Observation Manager:", self.observation_manager) # -- event manager self.event_manager = EventManager(self.cfg.events, self) print("[INFO] Event Manager: ", self.event_manager) """ Operations - MDP. """ def reset(self, seed: int | None = None, options: dict[str, Any] | None = None) -> tuple[VecEnvObs, dict]: """Resets all the environments and returns observations. Args: seed: The seed to use for randomization. Defaults to None, in which case the seed is not set. options: Additional information to specify how the environment is reset. Defaults to None. Note: This argument is used for compatibility with Gymnasium environment definition. Returns: A tuple containing the observations and extras. """ # set the seed if seed is not None: self.seed(seed) # reset state of scene indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) self._reset_idx(indices) # return observations return self.observation_manager.compute(), self.extras def step(self, action: torch.Tensor) -> VecEnvObs: """Execute one time-step of the environment's dynamics. The environment steps forward at a fixed time-step, while the physics simulation is decimated at a lower time-step. This is to ensure that the simulation is stable. These two time-steps can be configured independently using the :attr:`BaseEnvCfg.decimation` (number of simulation steps per environment step) and the :attr:`BaseEnvCfg.physics_dt` (physics time-step). Based on these parameters, the environment time-step is computed as the product of the two. Args: action: The actions to apply on the environment. Shape is (num_envs, action_dim). Returns: A tuple containing the observations and extras. """ # process actions self.action_manager.process_action(action) # perform physics stepping for _ in range(self.cfg.decimation): # set actions into buffers self.action_manager.apply_action() # set actions into simulator self.scene.write_data_to_sim() # simulate self.sim.step(render=False) # update buffers at sim dt self.scene.update(dt=self.physics_dt) # perform rendering if gui is enabled if self.sim.has_gui(): self.sim.render() # post-step: step interval event if "interval" in self.event_manager.available_modes: self.event_manager.apply(mode="interval", dt=self.step_dt) # return observations and extras return self.observation_manager.compute(), self.extras @staticmethod def seed(seed: int = -1) -> int: """Set the seed for the environment. Args: seed: The seed for random generator. Defaults to -1. Returns: The seed used for random generator. """ # set seed for replicator try: import omni.replicator.core as rep rep.set_global_seed(seed) except ModuleNotFoundError: pass # set seed for torch and other libraries return torch_utils.set_seed(seed) def close(self): """Cleanup for the environment.""" if not self._is_closed: # destructor is order-sensitive del self.action_manager del self.observation_manager del self.event_manager del self.scene del self.viewport_camera_controller # clear callbacks and instance self.sim.clear_all_callbacks() self.sim.clear_instance() # destroy the window if self._window is not None: self._window = None # update closing status self._is_closed = True """ Helper functions. """ def _reset_idx(self, env_ids: Sequence[int]): """Reset environments based on specified indices. Args: env_ids: List of environment ids which must be reset """ # reset the internal buffers of the scene elements self.scene.reset(env_ids) # apply events such as randomizations for environments that need a reset if "reset" in self.event_manager.available_modes: self.event_manager.apply(env_ids=env_ids, mode="reset") # iterate over all managers and reset them # this returns a dictionary of information which is stored in the extras # note: This is order-sensitive! Certain things need be reset before others. self.extras["log"] = dict() # -- observation manager info = self.observation_manager.reset(env_ids) self.extras["log"].update(info) # -- action manager info = self.action_manager.reset(env_ids) self.extras["log"].update(info) # -- event manager info = self.event_manager.reset(env_ids) self.extras["log"].update(info)
15,816
Python
42.936111
118
0.669512
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/ui/rl_task_env_window.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING from .base_env_window import BaseEnvWindow if TYPE_CHECKING: from ..rl_task_env import RLTaskEnv class RLTaskEnvWindow(BaseEnvWindow): """Window manager for the RL environment. On top of the basic environment window, this class adds controls for the RL environment. This includes visualization of the command manager. """ def __init__(self, env: RLTaskEnv, window_name: str = "Orbit"): """Initialize the window. Args: env: The environment object. window_name: The name of the window. Defaults to "Orbit". """ # initialize base window super().__init__(env, window_name) # add custom UI elements with self.ui_window_elements["main_vstack"]: with self.ui_window_elements["debug_frame"]: with self.ui_window_elements["debug_vstack"]: # add command manager visualization self._create_debug_vis_ui_element("commands", self.env.command_manager)
1,210
Python
30.051281
92
0.64876
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/ui/viewport_camera_controller.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import copy import numpy as np import torch import weakref from collections.abc import Sequence from typing import TYPE_CHECKING import omni.kit.app import omni.timeline if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv, ViewerCfg class ViewportCameraController: """This class handles controlling the camera associated with a viewport in the simulator. It can be used to set the viewpoint camera to track different origin types: - **world**: the center of the world (static) - **env**: the center of an environment (static) - **asset_root**: the root of an asset in the scene (e.g. tracking a robot moving in the scene) On creation, the camera is set to track the origin type specified in the configuration. For the :attr:`asset_root` origin type, the camera is updated at each rendering step to track the asset's root position. For this, it registers a callback to the post update event stream from the simulation app. """ def __init__(self, env: BaseEnv, cfg: ViewerCfg): """Initialize the ViewportCameraController. Args: env: The environment. cfg: The configuration for the viewport camera controller. Raises: ValueError: If origin type is configured to be "env" but :attr:`cfg.env_index` is out of bounds. ValueError: If origin type is configured to be "asset_root" but :attr:`cfg.asset_name` is unset. """ # store inputs self._env = env self._cfg = copy.deepcopy(cfg) # cast viewer eye and look-at to numpy arrays self.default_cam_eye = np.array(self._cfg.eye) self.default_cam_lookat = np.array(self._cfg.lookat) # set the camera origins if self.cfg.origin_type == "env": # check that the env_index is within bounds self.set_view_env_index(self.cfg.env_index) # set the camera origin to the center of the environment self.update_view_to_env() elif self.cfg.origin_type == "asset_root": # note: we do not yet update camera for tracking an asset origin, as the asset may not yet be # in the scene when this is called. Instead, we subscribe to the post update event to update the camera # at each rendering step. if self.cfg.asset_name is None: raise ValueError(f"No asset name provided for viewer with origin type: '{self.cfg.origin_type}'.") else: # set the camera origin to the center of the world self.update_view_to_world() # subscribe to post update event so that camera view can be updated at each rendering step app_interface = omni.kit.app.get_app_interface() app_event_stream = app_interface.get_post_update_event_stream() self._viewport_camera_update_handle = app_event_stream.create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._update_tracking_callback(event) ) def __del__(self): """Unsubscribe from the callback.""" # use hasattr to handle case where __init__ has not completed before __del__ is called if hasattr(self, "_viewport_camera_update_handle") and self._viewport_camera_update_handle is not None: self._viewport_camera_update_handle.unsubscribe() self._viewport_camera_update_handle = None """ Properties """ @property def cfg(self) -> ViewerCfg: """The configuration for the viewer.""" return self._cfg """ Public Functions """ def set_view_env_index(self, env_index: int): """Sets the environment index for the camera view. Args: env_index: The index of the environment to set the camera view to. Raises: ValueError: If the environment index is out of bounds. It should be between 0 and num_envs - 1. """ # check that the env_index is within bounds if env_index < 0 or env_index >= self._env.num_envs: raise ValueError( f"Out of range value for attribute 'env_index': {env_index}." f" Expected a value between 0 and {self._env.num_envs - 1} for the current environment." ) # update the environment index self.cfg.env_index = env_index # update the camera view if the origin is set to env type (since, the camera view is static) # note: for assets, the camera view is updated at each rendering step if self.cfg.origin_type == "env": self.update_view_to_env() def update_view_to_world(self): """Updates the viewer's origin to the origin of the world which is (0, 0, 0).""" # set origin type to world self.cfg.origin_type = "world" # update the camera origins self.viewer_origin = torch.zeros(3) # update the camera view self.update_view_location() def update_view_to_env(self): """Updates the viewer's origin to the origin of the selected environment.""" # set origin type to world self.cfg.origin_type = "env" # update the camera origins self.viewer_origin = self._env.scene.env_origins[self.cfg.env_index] # update the camera view self.update_view_location() def update_view_to_asset_root(self, asset_name: str): """Updates the viewer's origin based upon the root of an asset in the scene. Args: asset_name: The name of the asset in the scene. The name should match the name of the asset in the scene. Raises: ValueError: If the asset is not in the scene. """ # check if the asset is in the scene if self.cfg.asset_name != asset_name: asset_entities = [*self._env.scene.rigid_objects.keys(), *self._env.scene.articulations.keys()] if asset_name not in asset_entities: raise ValueError(f"Asset '{asset_name}' is not in the scene. Available entities: {asset_entities}.") # update the asset name self.cfg.asset_name = asset_name # set origin type to asset_root self.cfg.origin_type = "asset_root" # update the camera origins self.viewer_origin = self._env.scene[self.cfg.asset_name].data.root_pos_w[self.cfg.env_index] # update the camera view self.update_view_location() def update_view_location(self, eye: Sequence[float] | None = None, lookat: Sequence[float] | None = None): """Updates the camera view pose based on the current viewer origin and the eye and lookat positions. Args: eye: The eye position of the camera. If None, the current eye position is used. lookat: The lookat position of the camera. If None, the current lookat position is used. """ # store the camera view pose for later use if eye is not None: self.default_cam_eye = np.asarray(eye) if lookat is not None: self.default_cam_lookat = np.asarray(lookat) # set the camera locations viewer_origin = self.viewer_origin.detach().cpu().numpy() cam_eye = viewer_origin + self.default_cam_eye cam_target = viewer_origin + self.default_cam_lookat # set the camera view self._env.sim.set_camera_view(eye=cam_eye, target=cam_target) """ Private Functions """ def _update_tracking_callback(self, event): """Updates the camera view at each rendering step.""" # update the camera view if the origin is set to asset_root # in other cases, the camera view is static and does not need to be updated continuously if self.cfg.origin_type == "asset_root" and self.cfg.asset_name is not None: self.update_view_to_asset_root(self.cfg.asset_name)
8,046
Python
40.6943
116
0.637087
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/ui/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module providing UI window implementation for environments. The UI elements are used to control the environment and visualize the state of the environment. This includes functionalities such as tracking a robot in the simulation, toggling different debug visualization tools, and other user-defined functionalities. """ from .base_env_window import BaseEnvWindow from .rl_task_env_window import RLTaskEnvWindow from .viewport_camera_controller import ViewportCameraController
608
Python
37.062498
95
0.814145
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/ui/base_env_window.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import asyncio import os import weakref from datetime import datetime from typing import TYPE_CHECKING import omni.isaac.ui.ui_utils as ui_utils import omni.kit.app import omni.kit.commands import omni.ui import omni.usd from omni.kit.window.extensions import SimpleCheckBox from pxr import PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics if TYPE_CHECKING: from ..base_env import BaseEnv class BaseEnvWindow: """Window manager for the basic environment. This class creates a window that is used to control the environment. The window contains controls for rendering, debug visualization, and other environment-specific UI elements. Users can add their own UI elements to the window by using the `with` context manager. This can be done either be inheriting the class or by using the `env.window` object directly from the standalone execution script. Example for adding a UI element from the standalone execution script: >>> with env.window.ui_window_elements["main_vstack"]: >>> ui.Label("My UI element") """ def __init__(self, env: BaseEnv, window_name: str = "Orbit"): """Initialize the window. Args: env: The environment object. window_name: The name of the window. Defaults to "Orbit". """ # store inputs self.env = env # prepare the list of assets that can be followed by the viewport camera # note that the first two options are "World" and "Env" which are special cases self._viewer_assets_options = [ "World", "Env", *self.env.scene.rigid_objects.keys(), *self.env.scene.articulations.keys(), ] print("Creating window for environment.") # create window for UI self.ui_window = omni.ui.Window( window_name, width=400, height=500, visible=True, dock_preference=omni.ui.DockPreference.RIGHT_TOP ) # dock next to properties window asyncio.ensure_future(self._dock_window(window_title=self.ui_window.title)) # keep a dictionary of stacks so that child environments can add their own UI elements # this can be done by using the `with` context manager self.ui_window_elements = dict() # create main frame self.ui_window_elements["main_frame"] = self.ui_window.frame with self.ui_window_elements["main_frame"]: # create main stack self.ui_window_elements["main_vstack"] = omni.ui.VStack(spacing=5, height=0) with self.ui_window_elements["main_vstack"]: # create collapsable frame for simulation self._build_sim_frame() # create collapsable frame for viewer self._build_viewer_frame() # create collapsable frame for debug visualization self._build_debug_vis_frame() def __del__(self): """Destructor for the window.""" # destroy the window if self.ui_window is not None: self.ui_window.visible = False self.ui_window.destroy() self.ui_window = None """ Build sub-sections of the UI. """ def _build_sim_frame(self): """Builds the sim-related controls frame for the UI.""" # create collapsable frame for controls self.ui_window_elements["sim_frame"] = omni.ui.CollapsableFrame( title="Simulation Settings", width=omni.ui.Fraction(1), height=0, collapsed=False, style=ui_utils.get_style(), horizontal_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self.ui_window_elements["sim_frame"]: # create stack for controls self.ui_window_elements["sim_vstack"] = omni.ui.VStack(spacing=5, height=0) with self.ui_window_elements["sim_vstack"]: # create rendering mode dropdown render_mode_cfg = { "label": "Rendering Mode", "type": "dropdown", "default_val": self.env.sim.render_mode.value, "items": [member.name for member in self.env.sim.RenderMode if member.value >= 0], "tooltip": "Select a rendering mode\n" + self.env.sim.RenderMode.__doc__, "on_clicked_fn": lambda value: self.env.sim.set_render_mode(self.env.sim.RenderMode[value]), } self.ui_window_elements["render_dropdown"] = ui_utils.dropdown_builder(**render_mode_cfg) # create animation recording box record_animate_cfg = { "label": "Record Animation", "type": "state_button", "a_text": "START", "b_text": "STOP", "tooltip": "Record the animation of the scene. Only effective if fabric is disabled.", "on_clicked_fn": lambda value: self._toggle_recording_animation_fn(value), } self.ui_window_elements["record_animation"] = ui_utils.state_btn_builder(**record_animate_cfg) # disable the button if fabric is not enabled self.ui_window_elements["record_animation"].enabled = not self.env.sim.is_fabric_enabled() def _build_viewer_frame(self): """Build the viewer-related control frame for the UI.""" # create collapsable frame for viewer self.ui_window_elements["viewer_frame"] = omni.ui.CollapsableFrame( title="Viewer Settings", width=omni.ui.Fraction(1), height=0, collapsed=False, style=ui_utils.get_style(), horizontal_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self.ui_window_elements["viewer_frame"]: # create stack for controls self.ui_window_elements["viewer_vstack"] = omni.ui.VStack(spacing=5, height=0) with self.ui_window_elements["viewer_vstack"]: # create a number slider to move to environment origin # NOTE: slider is 1-indexed, whereas the env index is 0-indexed viewport_origin_cfg = { "label": "Environment Index", "type": "button", "default_val": self.env.cfg.viewer.env_index + 1, "min": 1, "max": self.env.num_envs, "tooltip": "The environment index to follow. Only effective if follow mode is not 'World'.", } self.ui_window_elements["viewer_env_index"] = ui_utils.int_builder(**viewport_origin_cfg) # create a number slider to move to environment origin self.ui_window_elements["viewer_env_index"].add_value_changed_fn(self._set_viewer_env_index_fn) # create a tracker for the camera location viewer_follow_cfg = { "label": "Follow Mode", "type": "dropdown", "default_val": 0, "items": [name.replace("_", " ").title() for name in self._viewer_assets_options], "tooltip": "Select the viewport camera following mode.", "on_clicked_fn": self._set_viewer_origin_type_fn, } self.ui_window_elements["viewer_follow"] = ui_utils.dropdown_builder(**viewer_follow_cfg) # add viewer default eye and lookat locations self.ui_window_elements["viewer_eye"] = ui_utils.xyz_builder( label="Camera Eye", tooltip="Modify the XYZ location of the viewer eye.", default_val=self.env.cfg.viewer.eye, step=0.1, on_value_changed_fn=[self._set_viewer_location_fn] * 3, ) self.ui_window_elements["viewer_lookat"] = ui_utils.xyz_builder( label="Camera Target", tooltip="Modify the XYZ location of the viewer target.", default_val=self.env.cfg.viewer.lookat, step=0.1, on_value_changed_fn=[self._set_viewer_location_fn] * 3, ) def _build_debug_vis_frame(self): """Builds the debug visualization frame for various scene elements. This function inquires the scene for all elements that have a debug visualization implemented and creates a checkbox to toggle the debug visualization for each element that has it implemented. If the element does not have a debug visualization implemented, a label is created instead. """ # create collapsable frame for debug visualization self.ui_window_elements["debug_frame"] = omni.ui.CollapsableFrame( title="Scene Debug Visualization", width=omni.ui.Fraction(1), height=0, collapsed=False, style=ui_utils.get_style(), horizontal_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=omni.ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self.ui_window_elements["debug_frame"]: # create stack for debug visualization self.ui_window_elements["debug_vstack"] = omni.ui.VStack(spacing=5, height=0) with self.ui_window_elements["debug_vstack"]: elements = [ self.env.scene.terrain, *self.env.scene.rigid_objects.values(), *self.env.scene.articulations.values(), *self.env.scene.sensors.values(), ] names = [ "terrain", *self.env.scene.rigid_objects.keys(), *self.env.scene.articulations.keys(), *self.env.scene.sensors.keys(), ] # create one for the terrain for elem, name in zip(elements, names): if elem is not None: self._create_debug_vis_ui_element(name, elem) """ Custom callbacks for UI elements. """ def _toggle_recording_animation_fn(self, value: bool): """Toggles the animation recording.""" if value: # log directory to save the recording if not hasattr(self, "animation_log_dir"): # create a new log directory log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") self.animation_log_dir = os.path.join(os.getcwd(), "recordings", log_dir) # start the recording _ = omni.kit.commands.execute( "StartRecording", target_paths=[("/World", True)], live_mode=True, use_frame_range=False, start_frame=0, end_frame=0, use_preroll=False, preroll_frame=0, record_to="FILE", fps=0, apply_root_anim=False, increment_name=True, record_folder=self.animation_log_dir, take_name="TimeSample", ) else: # stop the recording _ = omni.kit.commands.execute("StopRecording") # save the current stage stage = omni.usd.get_context().get_stage() source_layer = stage.GetRootLayer() # output the stage to a file stage_usd_path = os.path.join(self.animation_log_dir, "Stage.usd") source_prim_path = "/" # creates empty anon layer temp_layer = Sdf.Find(stage_usd_path) if temp_layer is None: temp_layer = Sdf.Layer.CreateNew(stage_usd_path) temp_stage = Usd.Stage.Open(temp_layer) # update stage data UsdGeom.SetStageUpAxis(temp_stage, UsdGeom.GetStageUpAxis(stage)) UsdGeom.SetStageMetersPerUnit(temp_stage, UsdGeom.GetStageMetersPerUnit(stage)) # copy the prim Sdf.CreatePrimInLayer(temp_layer, source_prim_path) Sdf.CopySpec(source_layer, source_prim_path, temp_layer, source_prim_path) # set the default prim temp_layer.defaultPrim = Sdf.Path(source_prim_path).name # remove all physics from the stage for prim in temp_stage.TraverseAll(): # skip if the prim is an instance if prim.IsInstanceable(): continue # if prim has articulation then disable it if prim.HasAPI(UsdPhysics.ArticulationRootAPI): prim.RemoveAPI(UsdPhysics.ArticulationRootAPI) prim.RemoveAPI(PhysxSchema.PhysxArticulationAPI) # if prim has rigid body then disable it if prim.HasAPI(UsdPhysics.RigidBodyAPI): prim.RemoveAPI(UsdPhysics.RigidBodyAPI) prim.RemoveAPI(PhysxSchema.PhysxRigidBodyAPI) # if prim is a joint type then disable it if prim.IsA(UsdPhysics.Joint): prim.GetAttribute("physics:jointEnabled").Set(False) # resolve all paths relative to layer path omni.usd.resolve_paths(source_layer.identifier, temp_layer.identifier) # save the stage temp_layer.Save() # print the path to the saved stage print("Recording completed.") print(f"\tSaved recorded stage to : {stage_usd_path}") print(f"\tSaved recorded animation to: {os.path.join(self.animation_log_dir, 'TimeSample_tk001.usd')}") print("\nTo play the animation, check the instructions in the following link:") print( "\thttps://docs.omniverse.nvidia.com/extensions/latest/ext_animation_stage-recorder.html#using-the-captured-timesamples" ) print("\n") # reset the log directory self.animation_log_dir = None def _set_viewer_origin_type_fn(self, value: str): """Sets the origin of the viewport's camera. This is based on the drop-down menu in the UI.""" # Extract the viewport camera controller from environment vcc = self.env.viewport_camera_controller if vcc is None: raise ValueError("Viewport camera controller is not initialized! Please check the rendering mode.") # Based on origin type, update the camera view if value == "World": vcc.update_view_to_world() elif value == "Env": vcc.update_view_to_env() else: # find which index the asset is fancy_names = [name.replace("_", " ").title() for name in self._viewer_assets_options] # store the desired env index viewer_asset_name = self._viewer_assets_options[fancy_names.index(value)] # update the camera view vcc.update_view_to_asset_root(viewer_asset_name) def _set_viewer_location_fn(self, model: omni.ui.SimpleFloatModel): """Sets the viewport camera location based on the UI.""" # access the viewport camera controller (for brevity) vcc = self.env.viewport_camera_controller if vcc is None: raise ValueError("Viewport camera controller is not initialized! Please check the rendering mode.") # obtain the camera locations and set them in the viewpoint camera controller eye = [self.ui_window_elements["viewer_eye"][i].get_value_as_float() for i in range(3)] lookat = [self.ui_window_elements["viewer_lookat"][i].get_value_as_float() for i in range(3)] # update the camera view vcc.update_view_location(eye, lookat) def _set_viewer_env_index_fn(self, model: omni.ui.SimpleIntModel): """Sets the environment index and updates the camera if in 'env' origin mode.""" # access the viewport camera controller (for brevity) vcc = self.env.viewport_camera_controller if vcc is None: raise ValueError("Viewport camera controller is not initialized! Please check the rendering mode.") # store the desired env index, UI is 1-indexed vcc.set_view_env_index(model.as_int - 1) """ Helper functions - UI building. """ def _create_debug_vis_ui_element(self, name: str, elem: object): """Create a checkbox for toggling debug visualization for the given element.""" with omni.ui.HStack(): # create the UI element text = ( "Toggle debug visualization." if elem.has_debug_vis_implementation else "Debug visualization not implemented." ) omni.ui.Label( name.replace("_", " ").title(), width=ui_utils.LABEL_WIDTH - 12, alignment=omni.ui.Alignment.LEFT_CENTER, tooltip=text, ) self.ui_window_elements[f"{name}_cb"] = SimpleCheckBox( model=omni.ui.SimpleBoolModel(), enabled=elem.has_debug_vis_implementation, checked=elem.cfg.debug_vis, on_checked_fn=lambda value, e=weakref.proxy(elem): e.set_debug_vis(value), ) ui_utils.add_line_rect_flourish() async def _dock_window(self, window_title: str): """Docks the custom UI window to the property window.""" # wait for the window to be created for _ in range(5): if omni.ui.Workspace.get_window(window_title): break await self.env.sim.app.next_update_async() # dock next to properties window custom_window = omni.ui.Workspace.get_window(window_title) property_window = omni.ui.Workspace.get_window("Property") if custom_window and property_window: custom_window.dock_in(property_window, omni.ui.DockPosition.SAME, 1.0) custom_window.focus()
18,520
Python
45.535176
136
0.582397
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module with implementation of manager terms. The functions can be provided to different managers that are responsible for the different aspects of the MDP. These include the observation, reward, termination, actions, events and curriculum managers. The terms are defined under the ``envs`` module because they are used to define the environment. However, they are not part of the environment directly, but are used to define the environment through their managers. """ from .actions import * # noqa: F401, F403 from .commands import * # noqa: F401, F403 from .curriculums import * # noqa: F401, F403 from .events import * # noqa: F401, F403 from .observations import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403 from .terminations import * # noqa: F401, F403
918
Python
35.759999
81
0.752723
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/curriculums.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to create curriculum for the learning environment. The functions can be passed to the :class:`omni.isaac.orbit.managers.CurriculumTermCfg` object to enable the curriculum introduced by the function. """ from __future__ import annotations from collections.abc import Sequence from typing import TYPE_CHECKING if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def modify_reward_weight(env: RLTaskEnv, env_ids: Sequence[int], term_name: str, weight: float, num_steps: int): """Curriculum that modifies a reward weight a given number of steps. Args: env: The learning environment. env_ids: Not used since all environments are affected. term_name: The name of the reward term. weight: The weight of the reward term. num_steps: The number of steps after which the change should be applied. """ if env.common_step_counter > num_steps: # obtain term settings term_cfg = env.reward_manager.get_term_cfg(term_name) # update term settings term_cfg.weight = weight env.reward_manager.set_term_cfg(term_name, term_cfg)
1,285
Python
33.756756
112
0.713619
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to enable reward functions. The functions can be passed to the :class:`omni.isaac.orbit.managers.RewardTermCfg` object to include the reward introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers.manager_base import ManagerTermBase from omni.isaac.orbit.managers.manager_term_cfg import RewardTermCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv """ General. """ def is_alive(env: RLTaskEnv) -> torch.Tensor: """Reward for being alive.""" return (~env.termination_manager.terminated).float() def is_terminated(env: RLTaskEnv) -> torch.Tensor: """Penalize terminated episodes that don't correspond to episodic timeouts.""" return env.termination_manager.terminated.float() class is_terminated_term(ManagerTermBase): """Penalize termination for specific terms that don't correspond to episodic timeouts. The parameters are as follows: * attr:`term_keys`: The termination terms to penalize. This can be a string, a list of strings or regular expressions. Default is ".*" which penalizes all terminations. The reward is computed as the sum of the termination terms that are not episodic timeouts. This means that the reward is 0 if the episode is terminated due to an episodic timeout. Otherwise, if two termination terms are active, the reward is 2. """ def __init__(self, cfg: RewardTermCfg, env: RLTaskEnv): # initialize the base class super().__init__(cfg, env) # find and store the termination terms term_keys = cfg.params.get("term_keys", ".*") self._term_names = env.termination_manager.find_terms(term_keys) def __call__(self, env: RLTaskEnv, term_keys: str | list[str] = ".*") -> torch.Tensor: # Return the unweighted reward for the termination terms reset_buf = torch.zeros(env.num_envs, device=env.device) for term in self._term_names: # Sums over terminations term values to account for multiple terminations in the same step reset_buf += env.termination_manager.get_term(term) return (reset_buf * (~env.termination_manager.time_outs)).float() """ Root penalties. """ def lin_vel_z_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize z-axis base linear velocity using L2-kernel.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return torch.square(asset.data.root_lin_vel_b[:, 2]) def ang_vel_xy_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize xy-axis base angular velocity using L2-kernel.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return torch.sum(torch.square(asset.data.root_ang_vel_b[:, :2]), dim=1) def flat_orientation_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize non-flat base orientation using L2-kernel. This is computed by penalizing the xy-components of the projected gravity vector. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return torch.sum(torch.square(asset.data.projected_gravity_b[:, :2]), dim=1) def base_height_l2( env: RLTaskEnv, target_height: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Penalize asset height from its target using L2-kernel. Note: Currently, it assumes a flat terrain, i.e. the target height is in the world frame. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] # TODO: Fix this for rough-terrain. return torch.square(asset.data.root_pos_w[:, 2] - target_height) def body_lin_acc_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize the linear acceleration of bodies using L2-kernel.""" asset: Articulation = env.scene[asset_cfg.name] return torch.sum(torch.norm(asset.data.body_lin_acc_w[:, asset_cfg.body_ids, :], dim=-1), dim=1) """ Joint penalties. """ def joint_torques_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize joint torques applied on the articulation using L2-kernel. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint torques contribute to the L2 norm. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return torch.sum(torch.square(asset.data.applied_torque[:, asset_cfg.joint_ids]), dim=1) def joint_vel_l1(env: RLTaskEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint velocities on the articulation using an L1-kernel.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return torch.sum(torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids]), dim=1) def joint_vel_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize joint velocities on the articulation using L1-kernel. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint velocities contribute to the L1 norm. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return torch.sum(torch.square(asset.data.joint_vel[:, asset_cfg.joint_ids]), dim=1) def joint_acc_l2(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize joint accelerations on the articulation using L2-kernel. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint accelerations contribute to the L2 norm. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return torch.sum(torch.square(asset.data.joint_acc[:, asset_cfg.joint_ids]), dim=1) def joint_deviation_l1(env, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize joint positions that deviate from the default one.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute out of limits constraints angle = asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.default_joint_pos[:, asset_cfg.joint_ids] return torch.sum(torch.abs(angle), dim=1) def joint_pos_limits(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize joint positions if they cross the soft limits. This is computed as a sum of the absolute value of the difference between the joint position and the soft limits. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute out of limits constraints out_of_limits = -( asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 0] ).clip(max=0.0) out_of_limits += ( asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 1] ).clip(min=0.0) return torch.sum(out_of_limits, dim=1) def joint_vel_limits( env: RLTaskEnv, soft_ratio: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Penalize joint velocities if they cross the soft limits. This is computed as a sum of the absolute value of the difference between the joint velocity and the soft limits. Args: soft_ratio: The ratio of the soft limits to be used. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute out of limits constraints out_of_limits = ( torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids]) - asset.data.soft_joint_vel_limits[:, asset_cfg.joint_ids] * soft_ratio ) # clip to max error = 1 rad/s per joint to avoid huge penalties out_of_limits = out_of_limits.clip_(min=0.0, max=1.0) return torch.sum(out_of_limits, dim=1) """ Action penalties. """ def applied_torque_limits(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Penalize applied torques if they cross the limits. This is computed as a sum of the absolute value of the difference between the applied torques and the limits. .. caution:: Currently, this only works for explicit actuators since we manually compute the applied torques. For implicit actuators, we currently cannot retrieve the applied torques from the physics engine. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute out of limits constraints # TODO: We need to fix this to support implicit joints. out_of_limits = torch.abs( asset.data.applied_torque[:, asset_cfg.joint_ids] - asset.data.computed_torque[:, asset_cfg.joint_ids] ) return torch.sum(out_of_limits, dim=1) def action_rate_l2(env: RLTaskEnv) -> torch.Tensor: """Penalize the rate of change of the actions using L2-kernel.""" return torch.sum(torch.square(env.action_manager.action - env.action_manager.prev_action), dim=1) def action_l2(env: RLTaskEnv) -> torch.Tensor: """Penalize the actions using L2-kernel.""" return torch.sum(torch.square(env.action_manager.action), dim=1) """ Contact sensor. """ def undesired_contacts(env: RLTaskEnv, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize undesired contacts as the number of violations that are above a threshold.""" # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # check if contact force is above threshold net_contact_forces = contact_sensor.data.net_forces_w_history is_contact = torch.max(torch.norm(net_contact_forces[:, :, sensor_cfg.body_ids], dim=-1), dim=1)[0] > threshold # sum over contacts for each environment return torch.sum(is_contact, dim=1) def contact_forces(env: RLTaskEnv, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize contact forces as the amount of violations of the net contact force.""" # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] net_contact_forces = contact_sensor.data.net_forces_w_history # compute the violation violation = torch.max(torch.norm(net_contact_forces[:, :, sensor_cfg.body_ids], dim=-1), dim=1)[0] - threshold # compute the penalty return torch.sum(violation.clip(min=0.0), dim=1) """ Velocity-tracking rewards. """ def track_lin_vel_xy_exp( env: RLTaskEnv, std: float, command_name: str, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward tracking of linear velocity commands (xy axes) using exponential kernel.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] # compute the error lin_vel_error = torch.sum( torch.square(env.command_manager.get_command(command_name)[:, :2] - asset.data.root_lin_vel_b[:, :2]), dim=1, ) return torch.exp(-lin_vel_error / std**2) def track_ang_vel_z_exp( env: RLTaskEnv, std: float, command_name: str, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward tracking of angular velocity commands (yaw) using exponential kernel.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] # compute the error ang_vel_error = torch.square(env.command_manager.get_command(command_name)[:, 2] - asset.data.root_ang_vel_b[:, 2]) return torch.exp(-ang_vel_error / std**2)
12,477
Python
40.732441
130
0.70666
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/events.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to enable different events. Events include anything related to altering the simulation state. This includes changing the physics materials, applying external forces, and resetting the state of the asset. The functions can be passed to the :class:`omni.isaac.orbit.managers.EventTermCfg` object to enable the event introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers.manager_base import ManagerTermBase from omni.isaac.orbit.managers.manager_term_cfg import EventTermCfg from omni.isaac.orbit.terrains import TerrainImporter from omni.isaac.orbit.utils.math import quat_from_euler_xyz, random_orientation, sample_uniform if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv def randomize_rigid_body_material( env: BaseEnv, env_ids: torch.Tensor | None, static_friction_range: tuple[float, float], dynamic_friction_range: tuple[float, float], restitution_range: tuple[float, float], num_buckets: int, asset_cfg: SceneEntityCfg, ): """Randomize the physics materials on all geometries of the asset. This function creates a set of physics materials with random static friction, dynamic friction, and restitution values. The number of materials is specified by ``num_buckets``. The materials are generated by sampling uniform random values from the given ranges. The material properties are then assigned to the geometries of the asset. The assignment is done by creating a random integer tensor of shape (num_instances, max_num_shapes) where ``num_instances`` is the number of assets spawned and ``max_num_shapes`` is the maximum number of shapes in the asset (over all bodies). The integer values are used as indices to select the material properties from the material buckets. .. attention:: This function uses CPU tensors to assign the material properties. It is recommended to use this function only during the initialization of the environment. Otherwise, it may lead to a significant performance overhead. .. note:: PhysX only allows 64000 unique physics materials in the scene. If the number of materials exceeds this limit, the simulation will crash. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] num_envs = env.scene.num_envs # resolve environment ids if env_ids is None: env_ids = torch.arange(num_envs, device="cpu") # sample material properties from the given ranges material_buckets = torch.zeros(num_buckets, 3) material_buckets[:, 0].uniform_(*static_friction_range) material_buckets[:, 1].uniform_(*dynamic_friction_range) material_buckets[:, 2].uniform_(*restitution_range) # create random material assignments based on the total number of shapes: num_assets x num_shapes # note: not optimal since it creates assignments for all the shapes but only a subset is used in the body indices case. material_ids = torch.randint(0, num_buckets, (len(env_ids), asset.root_physx_view.max_shapes)) if asset_cfg.body_ids == slice(None): # get the current materials of the bodies materials = asset.root_physx_view.get_material_properties() # assign the new materials # material ids are of shape: num_env_ids x num_shapes # material_buckets are of shape: num_buckets x 3 materials[env_ids] = material_buckets[material_ids] # set the material properties into the physics simulation asset.root_physx_view.set_material_properties(materials, env_ids) elif isinstance(asset, Articulation): # obtain number of shapes per body (needed for indexing the material properties correctly) # note: this is a workaround since the Articulation does not provide a direct way to obtain the number of shapes # per body. We use the physics simulation view to obtain the number of shapes per body. num_shapes_per_body = [] for link_path in asset.root_physx_view.link_paths[0]: link_physx_view = asset._physics_sim_view.create_rigid_body_view(link_path) # type: ignore num_shapes_per_body.append(link_physx_view.max_shapes) # get the current materials of the bodies materials = asset.root_physx_view.get_material_properties() # sample material properties from the given ranges for body_id in asset_cfg.body_ids: # start index of shape start_idx = sum(num_shapes_per_body[:body_id]) # end index of shape end_idx = start_idx + num_shapes_per_body[body_id] # assign the new materials # material ids are of shape: num_env_ids x num_shapes # material_buckets are of shape: num_buckets x 3 materials[env_ids, start_idx:end_idx] = material_buckets[material_ids[:, start_idx:end_idx]] # set the material properties into the physics simulation asset.root_physx_view.set_material_properties(materials, env_ids) else: raise ValueError( f"Randomization term 'randomize_rigid_body_material' not supported for asset: '{asset_cfg.name}'" f" with type: '{type(asset)}' and body_ids: '{asset_cfg.body_ids}'." ) def add_body_mass( env: BaseEnv, env_ids: torch.Tensor | None, mass_range: tuple[float, float], asset_cfg: SceneEntityCfg ): """Randomize the mass of the bodies by adding a random value sampled from the given range. .. tip:: This function uses CPU tensors to assign the material properties. It is recommended to use this function only during the initialization of the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] num_envs = env.scene.num_envs # resolve environment ids if env_ids is None: env_ids = torch.arange(num_envs, device="cpu") # resolve body indices if asset_cfg.body_ids == slice(None): body_ids = torch.arange(asset.num_bodies, dtype=torch.int, device="cpu") else: body_ids = torch.tensor(asset_cfg.body_ids, dtype=torch.int, device="cpu") # get the current masses of the bodies (num_assets, num_bodies) masses = asset.root_physx_view.get_masses() # note: we modify the masses in-place for all environments # however, the setter takes care that only the masses of the specified environments are modified masses[:, body_ids] += sample_uniform(*mass_range, (masses.shape[0], len(body_ids)), device=masses.device) # set the mass into the physics simulation asset.root_physx_view.set_masses(masses, env_ids) def apply_external_force_torque( env: BaseEnv, env_ids: torch.Tensor, force_range: tuple[float, float], torque_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Randomize the external forces and torques applied to the bodies. This function creates a set of random forces and torques sampled from the given ranges. The number of forces and torques is equal to the number of bodies times the number of environments. The forces and torques are applied to the bodies by calling ``asset.set_external_force_and_torque``. The forces and torques are only applied when ``asset.write_data_to_sim()`` is called in the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] num_envs = env.scene.num_envs # resolve environment ids if env_ids is None: env_ids = torch.arange(num_envs) # resolve number of bodies num_bodies = len(asset_cfg.body_ids) if isinstance(asset_cfg.body_ids, list) else asset.num_bodies # sample random forces and torques size = (len(env_ids), num_bodies, 3) forces = sample_uniform(*force_range, size, asset.device) torques = sample_uniform(*torque_range, size, asset.device) # set the forces and torques into the buffers # note: these are only applied when you call: `asset.write_data_to_sim()` asset.set_external_force_and_torque(forces, torques, env_ids=env_ids, body_ids=asset_cfg.body_ids) def push_by_setting_velocity( env: BaseEnv, env_ids: torch.Tensor, velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Push the asset by setting the root velocity to a random value within the given ranges. This creates an effect similar to pushing the asset with a random impulse that changes the asset's velocity. It samples the root velocity from the given ranges and sets the velocity into the physics simulation. The function takes a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # velocities vel_w = asset.data.root_vel_w[env_ids] # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) vel_w[:] = sample_uniform(ranges[:, 0], ranges[:, 1], vel_w.shape, device=asset.device) # set the velocities into the physics simulation asset.write_root_velocity_to_sim(vel_w, env_ids=env_ids) def reset_root_state_uniform( env: BaseEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root state to a random position and velocity uniformly within the given ranges. This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation from the given ranges and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the position or velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples[:, 0:3] orientations = quat_from_euler_xyz(rand_samples[:, 3], rand_samples[:, 4], rand_samples[:, 5]) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_root_state_with_random_orientation( env: BaseEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root position and velocities sampled randomly within the given ranges and the asset root orientation sampled randomly from the SO(3). This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation uniformly from the SO(3) and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation: * :attr:`pose_range` - a dictionary of position ranges for each axis. The keys of the dictionary are ``x``, ``y``, and ``z``. * :attr:`velocity_range` - a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a particular key, the position is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples orientations = random_orientation(len(env_ids), device=asset.device) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_robot_root_from_terrain( env: BaseEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot root state by sampling a random valid pose from the terrain. This function samples a random valid pose(based on flat patches) from the terrain and sets the root state of the robot to this pose. The function also samples random velocities from the given ranges and sets them into the physics simulation. Note: The function expects the terrain to have valid flat patches under the key "init_pos". The flat patches are used to sample the random pose for the robot. Raises: ValueError: If the terrain does not have valid flat patches under the key "init_pos". """ # access the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain # obtain all flat patches corresponding to the valid poses valid_poses: torch.Tensor = terrain.flat_patches.get("init_pos") if valid_poses is None: raise ValueError( "The event term 'reset_robot_root_from_terrain' requires valid flat patches under 'init_pos'." f" Found: {list(terrain.flat_patches.keys())}" ) # sample random valid poses ids = torch.randint(0, valid_poses.shape[2], size=(len(env_ids),), device=env.device) positions = valid_poses[terrain.terrain_levels[env_ids], terrain.terrain_types[env_ids], ids] positions += asset.data.default_root_state[env_ids, :3] # sample random orientations range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) # convert to quaternions orientations = quat_from_euler_xyz(rand_samples[:, 0], rand_samples[:, 1], rand_samples[:, 2]) # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = asset.data.default_root_state[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_joints_by_scale( env: BaseEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints by scaling the default position and velocity by the given ranges. This function samples random values from the given ranges and scales the default joint positions and velocities by these values. The scaled values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # scale these values randomly joint_pos *= sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel *= sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) def reset_joints_by_offset( env: BaseEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints with offsets around the default position and velocity by the given ranges. This function samples random values from the given ranges and biases the default joint positions and velocities by these values. The biased values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # bias these values randomly joint_pos += sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel += sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) class reset_joints_within_range(ManagerTermBase): """Reset an articulation's joints to a random position in the given ranges. This function samples random values for the joint position and velocities from the given ranges. The values are then set into the physics simulation. The parameters to the function are: * :attr:`position_range` - a dictionary of position ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`velocity_range` - a dictionary of velocity ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`use_default_offset` - a boolean flag to indicate if the ranges are offset by the default joint state. Defaults to False. * :attr:`asset_cfg` - the configuration of the asset to reset. Defaults to the entity named "robot" in the scene. The dictionary values are a tuple of the form ``(min, max)``, where ``min`` and ``max`` are the minimum and maximum values. If the dictionary does not contain a key, the joint position or joint velocity is set to the default value for that joint. If the ``min`` or the ``max`` value is ``None``, the joint limits are used instead. """ def __init__(self, cfg: EventTermCfg, env: BaseEnv): # initialize the base class super().__init__(cfg, env) # check if the cfg has the required parameters if "position_range" not in cfg.params or "velocity_range" not in cfg.params: raise ValueError( "The term 'reset_joints_within_range' requires parameters: 'position_range' and 'velocity_range'." f" Received: {list(cfg.params.keys())}." ) # parse the parameters asset_cfg: SceneEntityCfg = cfg.params.get("asset_cfg", SceneEntityCfg("robot")) use_default_offset = cfg.params.get("use_default_offset", False) # extract the used quantities (to enable type-hinting) self._asset: Articulation = env.scene[asset_cfg.name] default_joint_pos = self._asset.data.default_joint_pos[0] default_joint_vel = self._asset.data.default_joint_vel[0] # create buffers to store the joint position and velocity ranges self._pos_ranges = self._asset.data.soft_joint_pos_limits[0].clone() self._vel_ranges = torch.stack( [-self._asset.data.soft_joint_vel_limits[0], self._asset.data.soft_joint_vel_limits[0]], dim=1 ) # parse joint position ranges pos_joint_ids = [] for joint_name, joint_range in cfg.params["position_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] pos_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if joint_range[0] is not None: self._pos_ranges[joint_ids, 0] = joint_range[0] + use_default_offset * default_joint_pos[joint_ids] if joint_range[1] is not None: self._pos_ranges[joint_ids, 1] = joint_range[1] + use_default_offset * default_joint_pos[joint_ids] # store the joint pos ids (used later to sample the joint positions) self._pos_joint_ids = torch.tensor(pos_joint_ids, device=self._pos_ranges.device) # clamp sampling range to the joint position limits joint_pos_limits = self._asset.data.soft_joint_pos_limits[0] self._pos_ranges = self._pos_ranges.clamp(min=joint_pos_limits[:, 0], max=joint_pos_limits[:, 1]) self._pos_ranges = self._pos_ranges[self._pos_joint_ids] # parse joint velocity ranges vel_joint_ids = [] for joint_name, joint_range in cfg.params["velocity_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] vel_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if joint_range[0] is not None: self._vel_ranges[joint_ids, 0] = joint_range[0] + use_default_offset * default_joint_vel[joint_ids] if joint_range[1] is not None: self._vel_ranges[joint_ids, 1] = joint_range[1] + use_default_offset * default_joint_vel[joint_ids] # store the joint vel ids (used later to sample the joint positions) self._vel_joint_ids = torch.tensor(vel_joint_ids, device=self._vel_ranges.device) # clamp sampling range to the joint velocity limits joint_vel_limits = self._asset.data.soft_joint_vel_limits[0] self._vel_ranges = self._vel_ranges.clamp(min=-joint_vel_limits[:, None], max=joint_vel_limits[:, None]) self._vel_ranges = self._vel_ranges[self._vel_joint_ids] def __call__( self, env: BaseEnv, env_ids: torch.Tensor, position_range: dict[str, tuple[float | None, float | None]], velocity_range: dict[str, tuple[float | None, float | None]], use_default_offset: bool = False, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): # get default joint state joint_pos = self._asset.data.default_joint_pos[env_ids].clone() joint_vel = self._asset.data.default_joint_vel[env_ids].clone() # sample random joint positions for each joint if len(self._pos_joint_ids) > 0: joint_pos_shape = (len(env_ids), len(self._pos_joint_ids)) joint_pos[:, self._pos_joint_ids] = sample_uniform( self._pos_ranges[:, 0], self._pos_ranges[:, 1], joint_pos_shape, device=joint_pos.device ) # sample random joint velocities for each joint if len(self._vel_joint_ids) > 0: joint_vel_shape = (len(env_ids), len(self._vel_joint_ids)) joint_vel[:, self._vel_joint_ids] = sample_uniform( self._vel_ranges[:, 0], self._vel_ranges[:, 1], joint_vel_shape, device=joint_vel.device ) # set into the physics simulation self._asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) def reset_scene_to_default(env: BaseEnv, env_ids: torch.Tensor): """Reset the scene to the default state specified in the scene configuration.""" # rigid bodies for rigid_object in env.scene.rigid_objects.values(): # obtain default and deal with the offset for env origins default_root_state = rigid_object.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation rigid_object.write_root_state_to_sim(default_root_state, env_ids=env_ids) # articulations for articulation_asset in env.scene.articulations.values(): # obtain default and deal with the offset for env origins default_root_state = articulation_asset.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation articulation_asset.write_root_state_to_sim(default_root_state, env_ids=env_ids) # obtain default joint positions default_joint_pos = articulation_asset.data.default_joint_pos[env_ids].clone() default_joint_vel = articulation_asset.data.default_joint_vel[env_ids].clone() # set into the physics simulation articulation_asset.write_joint_state_to_sim(default_joint_pos, default_joint_vel, env_ids=env_ids)
27,752
Python
48.470588
123
0.682077
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/terminations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to activate certain terminations. The functions can be passed to the :class:`omni.isaac.orbit.managers.TerminationTermCfg` object to enable the termination introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit.managers.command_manager import CommandTerm """ MDP terminations. """ def time_out(env: RLTaskEnv) -> torch.Tensor: """Terminate the episode when the episode length exceeds the maximum episode length.""" return env.episode_length_buf >= env.max_episode_length def command_resample(env: RLTaskEnv, command_name: str, num_resamples: int = 1) -> torch.Tensor: """Terminate the episode based on the total number of times commands have been re-sampled. This makes the maximum episode length fluid in nature as it depends on how the commands are sampled. It is useful in situations where delayed rewards are used :cite:`rudin2022advanced`. """ command: CommandTerm = env.command_manager.get_term(command_name) return torch.logical_and((command.time_left <= env.step_dt), (command.command_counter == num_resamples)) """ Root terminations. """ def bad_orientation( env: RLTaskEnv, limit_angle: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's orientation is too far from the desired orientation limits. This is computed by checking the angle between the projected gravity vector and the z-axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return torch.acos(-asset.data.projected_gravity_b[:, 2]).abs() > limit_angle def base_height( env: RLTaskEnv, minimum_height: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's height is below the minimum height. Note: This is currently only supported for flat terrains, i.e. the minimum height is in the world frame. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_pos_w[:, 2] < minimum_height """ Joint terminations. """ def joint_pos_limit(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Terminate when the asset's joint positions are outside of the soft joint limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute any violations out_of_upper_limits = torch.any(asset.data.joint_pos > asset.data.soft_joint_pos_limits[..., 1], dim=1) out_of_lower_limits = torch.any(asset.data.joint_pos < asset.data.soft_joint_pos_limits[..., 0], dim=1) return torch.logical_or(out_of_upper_limits, out_of_lower_limits) def joint_pos_manual_limit( env: RLTaskEnv, bounds: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's joint positions are outside of the configured bounds. Note: This function is similar to :func:`joint_pos_limit` but allows the user to specify the bounds manually. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] if asset_cfg.joint_ids is None: asset_cfg.joint_ids = slice(None) # compute any violations out_of_upper_limits = torch.any(asset.data.joint_pos[:, asset_cfg.joint_ids] > bounds[1], dim=1) out_of_lower_limits = torch.any(asset.data.joint_pos[:, asset_cfg.joint_ids] < bounds[0], dim=1) return torch.logical_or(out_of_upper_limits, out_of_lower_limits) def joint_vel_limit(env: RLTaskEnv, max_velocity, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Terminate when the asset's joint velocities are outside of the soft joint limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # TODO read max velocities per joint from robot return torch.any(torch.abs(asset.data.joint_vel) > max_velocity, dim=1) def joint_torque_limit(env: RLTaskEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Terminate when torque applied on the asset's joints are are outside of the soft joint limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return torch.any( torch.isclose(asset.data.computed_torques, asset.data.applied_torque), dim=1, ) """ Contact sensor. """ def illegal_contact(env: RLTaskEnv, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Terminate when the contact force on the sensor exceeds the force threshold.""" # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] net_contact_forces = contact_sensor.data.net_forces_w_history # check if any contact force exceeds the threshold return torch.any( torch.max(torch.norm(net_contact_forces[:, :, sensor_cfg.body_ids], dim=-1), dim=1)[0] > threshold, dim=1 )
5,608
Python
39.064285
119
0.720578
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to create observation terms. The functions can be passed to the :class:`omni.isaac.orbit.managers.ObservationTermCfg` object to enable the observation introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import RayCaster if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv, RLTaskEnv """ Root state. """ def base_pos_z(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Root height in the simulation world frame.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return asset.data.root_pos_w[:, 2].unsqueeze(-1) def base_lin_vel(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Root linear velocity in the asset's root frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_lin_vel_b def base_ang_vel(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Root angular velocity in the asset's root frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_ang_vel_b def projected_gravity(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Gravity projection on the asset's root frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.projected_gravity_b def root_pos_w(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Asset root position in the environment frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_pos_w - env.scene.env_origins def root_quat_w(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Asset root orientation in the environment frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_quat_w def root_lin_vel_w(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Asset root linear velocity in the environment frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_lin_vel_w def root_ang_vel_w(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Asset root angular velocity in the environment frame.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_ang_vel_w """ Joint state. """ def joint_pos_rel(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """The joint positions of the asset w.r.t. the default joint positions. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their positions returned. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.default_joint_pos[:, asset_cfg.joint_ids] def joint_pos_norm(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """The joint positions of the asset normalized with the asset's joint limits. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their normalized positions returned. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return math_utils.scale_transform( asset.data.joint_pos[:, asset_cfg.joint_ids], asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 0], asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 1], ) def joint_vel_rel(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")): """The joint velocities of the asset w.r.t. the default joint velocities. NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their velocities returned. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] return asset.data.joint_vel[:, asset_cfg.joint_ids] - asset.data.default_joint_vel[:, asset_cfg.joint_ids] """ Sensors. """ def height_scan(env: BaseEnv, sensor_cfg: SceneEntityCfg, offset: float = 0.5) -> torch.Tensor: """Height scan from the given sensor w.r.t. the sensor's frame. The provided offset (Defaults to 0.5) is subtracted from the returned values. """ # extract the used quantities (to enable type-hinting) sensor: RayCaster = env.scene.sensors[sensor_cfg.name] # height scan: height = sensor_height - hit_point_z - offset return sensor.data.pos_w[:, 2].unsqueeze(1) - sensor.data.ray_hits_w[..., 2] - offset def body_incoming_wrench(env: BaseEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Incoming spatial wrench on bodies of an articulation in the simulation world frame. This is the 6-D wrench (force and torque) applied to the body link by the incoming joint force. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # obtain the link incoming forces in world frame link_incoming_forces = asset.root_physx_view.get_link_incoming_joint_force()[:, asset_cfg.body_ids] return link_incoming_forces.view(env.num_envs, -1) """ Actions. """ def last_action(env: BaseEnv, action_name: str | None = None) -> torch.Tensor: """The last input action to the environment. The name of the action term for which the action is required. If None, the entire action tensor is returned. """ if action_name is None: return env.action_manager.action else: return env.action_manager.get_term(action_name).raw_actions """ Commands. """ def generated_commands(env: RLTaskEnv, command_name: str) -> torch.Tensor: """The generated command from command term in the command manager with the given name.""" return env.command_manager.get_command(command_name)
6,773
Python
37.05618
114
0.713569
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/task_space_actions.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import carb import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets.articulation import Articulation from omni.isaac.orbit.controllers.differential_ik import DifferentialIKController from omni.isaac.orbit.managers.action_manager import ActionTerm if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from . import actions_cfg class DifferentialInverseKinematicsAction(ActionTerm): r"""Inverse Kinematics action term. This action term performs pre-processing of the raw actions using scaling transformation. .. math:: \text{action} = \text{scaling} \times \text{input action} \text{joint position} = J^{-} \times \text{action} where :math:`\text{scaling}` is the scaling applied to the input action, and :math:`\text{input action}` is the input action from the user, :math:`J` is the Jacobian over the articulation's actuated joints, and \text{joint position} is the desired joint position command for the articulation's joints. """ cfg: actions_cfg.DifferentialInverseKinematicsActionCfg """The configuration of the action term.""" _asset: Articulation """The articulation asset on which the action term is applied.""" _scale: torch.Tensor """The scaling factor applied to the input action. Shape is (1, action_dim).""" def __init__(self, cfg: actions_cfg.DifferentialInverseKinematicsActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # resolve the joints over which the action term is applied self._joint_ids, self._joint_names = self._asset.find_joints(self.cfg.joint_names) self._num_joints = len(self._joint_ids) # parse the body index body_ids, body_names = self._asset.find_bodies(self.cfg.body_name) if len(body_ids) != 1: raise ValueError( f"Expected one match for the body name: {self.cfg.body_name}. Found {len(body_ids)}: {body_names}." ) # save only the first body index self._body_idx = body_ids[0] self._body_name = body_names[0] # check if articulation is fixed-base # if fixed-base then the jacobian for the base is not computed # this means that number of bodies is one less than the articulation's number of bodies if self._asset.is_fixed_base: self._jacobi_body_idx = self._body_idx - 1 else: self._jacobi_body_idx = self._body_idx # log info for debugging carb.log_info( f"Resolved joint names for the action term {self.__class__.__name__}:" f" {self._joint_names} [{self._joint_ids}]" ) carb.log_info( f"Resolved body name for the action term {self.__class__.__name__}: {self._body_name} [{self._body_idx}]" ) # Avoid indexing across all joints for efficiency if self._num_joints == self._asset.num_joints: self._joint_ids = slice(None) # create the differential IK controller self._ik_controller = DifferentialIKController( cfg=self.cfg.controller, num_envs=self.num_envs, device=self.device ) # create tensors for raw and processed actions self._raw_actions = torch.zeros(self.num_envs, self.action_dim, device=self.device) self._processed_actions = torch.zeros_like(self.raw_actions) # save the scale as tensors self._scale = torch.zeros((self.num_envs, self.action_dim), device=self.device) self._scale[:] = torch.tensor(self.cfg.scale, device=self.device) # convert the fixed offsets to torch tensors of batched shape if self.cfg.body_offset is not None: self._offset_pos = torch.tensor(self.cfg.body_offset.pos, device=self.device).repeat(self.num_envs, 1) self._offset_rot = torch.tensor(self.cfg.body_offset.rot, device=self.device).repeat(self.num_envs, 1) else: self._offset_pos, self._offset_rot = None, None """ Properties. """ @property def action_dim(self) -> int: return self._ik_controller.action_dim @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations. """ def process_actions(self, actions: torch.Tensor): # store the raw actions self._raw_actions[:] = actions self._processed_actions[:] = self.raw_actions * self._scale # obtain quantities from simulation ee_pos_curr, ee_quat_curr = self._compute_frame_pose() # set command into controller self._ik_controller.set_command(self._processed_actions, ee_pos_curr, ee_quat_curr) def apply_actions(self): # obtain quantities from simulation ee_pos_curr, ee_quat_curr = self._compute_frame_pose() joint_pos = self._asset.data.joint_pos[:, self._joint_ids] # compute the delta in joint-space if ee_quat_curr.norm() != 0: jacobian = self._compute_frame_jacobian() joint_pos_des = self._ik_controller.compute(ee_pos_curr, ee_quat_curr, jacobian, joint_pos) else: joint_pos_des = joint_pos.clone() # set the joint position command self._asset.set_joint_position_target(joint_pos_des, self._joint_ids) """ Helper functions. """ def _compute_frame_pose(self) -> tuple[torch.Tensor, torch.Tensor]: """Computes the pose of the target frame in the root frame. Returns: A tuple of the body's position and orientation in the root frame. """ # obtain quantities from simulation ee_pose_w = self._asset.data.body_state_w[:, self._body_idx, :7] root_pose_w = self._asset.data.root_state_w[:, :7] # compute the pose of the body in the root frame ee_pose_b, ee_quat_b = math_utils.subtract_frame_transforms( root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7] ) # account for the offset if self.cfg.body_offset is not None: ee_pose_b, ee_quat_b = math_utils.combine_frame_transforms( ee_pose_b, ee_quat_b, self._offset_pos, self._offset_rot ) return ee_pose_b, ee_quat_b def _compute_frame_jacobian(self): """Computes the geometric Jacobian of the target frame in the root frame. This function accounts for the target frame offset and applies the necessary transformations to obtain the right Jacobian from the parent body Jacobian. """ # read the parent jacobian jacobian = self._asset.root_physx_view.get_jacobians()[:, self._jacobi_body_idx, :, self._joint_ids] # account for the offset if self.cfg.body_offset is not None: # Modify the jacobian to account for the offset # -- translational part # v_link = v_ee + w_ee x r_link_ee = v_J_ee * q + w_J_ee * q x r_link_ee # = (v_J_ee + w_J_ee x r_link_ee ) * q # = (v_J_ee - r_link_ee_[x] @ w_J_ee) * q jacobian[:, 0:3, :] += torch.bmm(-math_utils.skew_symmetric_matrix(self._offset_pos), jacobian[:, 3:, :]) # -- rotational part # w_link = R_link_ee @ w_ee jacobian[:, 3:, :] = torch.bmm(math_utils.matrix_from_quat(self._offset_rot), jacobian[:, 3:, :]) return jacobian
7,767
Python
40.100529
117
0.627527
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/non_holonomic_actions.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import carb from omni.isaac.orbit.assets.articulation import Articulation from omni.isaac.orbit.managers.action_manager import ActionTerm from omni.isaac.orbit.utils.math import euler_xyz_from_quat if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from . import actions_cfg class NonHolonomicAction(ActionTerm): r"""Non-holonomic action that maps a two dimensional action to the velocity of the robot in the x, y and yaw directions. This action term helps model a skid-steer robot base. The action is a 2D vector which comprises of the forward velocity :math:`v_{B,x}` and the turning rate :\omega_{B,z}: in the base frame. Using the current base orientation, the commands are transformed into dummy joint velocity targets as: .. math:: \dot{q}_{0, des} &= v_{B,x} \cos(\theta) \\ \dot{q}_{1, des} &= v_{B,x} \sin(\theta) \\ \dot{q}_{2, des} &= \omega_{B,z} where :math:`\theta` is the yaw of the 2-D base. Since the base is simulated as a dummy joint, the yaw is directly the value of the revolute joint along z, i.e., :math:`q_2 = \theta`. .. note:: The current implementation assumes that the base is simulated with three dummy joints (prismatic joints along x and y, and revolute joint along z). This is because it is easier to consider the mobile base as a floating link controlled by three dummy joints, in comparison to simulating wheels which is at times is tricky because of friction settings. However, the action term can be extended to support other base configurations as well. .. tip:: For velocity control of the base with dummy mechanism, we recommend setting high damping gains to the joints. This ensures that the base remains unperturbed from external disturbances, such as an arm mounted on the base. """ cfg: actions_cfg.NonHolonomicActionCfg """The configuration of the action term.""" _asset: Articulation """The articulation asset on which the action term is applied.""" _scale: torch.Tensor """The scaling factor applied to the input action. Shape is (1, 2).""" _offset: torch.Tensor """The offset applied to the input action. Shape is (1, 2).""" def __init__(self, cfg: actions_cfg.NonHolonomicActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # parse the joint information # -- x joint x_joint_id, x_joint_name = self._asset.find_joints(self.cfg.x_joint_name) if len(x_joint_id) != 1: raise ValueError( f"Expected a single joint match for the x joint name: {self.cfg.x_joint_name}, got {len(x_joint_id)}" ) # -- y joint y_joint_id, y_joint_name = self._asset.find_joints(self.cfg.y_joint_name) if len(y_joint_id) != 1: raise ValueError(f"Found more than one joint match for the y joint name: {self.cfg.y_joint_name}") # -- yaw joint yaw_joint_id, yaw_joint_name = self._asset.find_joints(self.cfg.yaw_joint_name) if len(yaw_joint_id) != 1: raise ValueError(f"Found more than one joint match for the yaw joint name: {self.cfg.yaw_joint_name}") # parse the body index self._body_idx, self._body_name = self._asset.find_bodies(self.cfg.body_name) if len(self._body_idx) != 1: raise ValueError(f"Found more than one body match for the body name: {self.cfg.body_name}") # process into a list of joint ids self._joint_ids = [x_joint_id[0], y_joint_id[0], yaw_joint_id[0]] self._joint_names = [x_joint_name[0], y_joint_name[0], yaw_joint_name[0]] # log info for debugging carb.log_info( f"Resolved joint names for the action term {self.__class__.__name__}:" f" {self._joint_names} [{self._joint_ids}]" ) carb.log_info( f"Resolved body name for the action term {self.__class__.__name__}: {self._body_name} [{self._body_idx}]" ) # create tensors for raw and processed actions self._raw_actions = torch.zeros(self.num_envs, self.action_dim, device=self.device) self._processed_actions = torch.zeros_like(self.raw_actions) self._joint_vel_command = torch.zeros(self.num_envs, 3, device=self.device) # save the scale and offset as tensors self._scale = torch.tensor(self.cfg.scale, device=self.device).unsqueeze(0) self._offset = torch.tensor(self.cfg.offset, device=self.device).unsqueeze(0) """ Properties. """ @property def action_dim(self) -> int: return 2 @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations. """ def process_actions(self, actions): # store the raw actions self._raw_actions[:] = actions self._processed_actions = self.raw_actions * self._scale + self._offset def apply_actions(self): # obtain current heading quat_w = self._asset.data.body_quat_w[:, self._body_idx] yaw_w = euler_xyz_from_quat(quat_w)[2] # compute joint velocities targets self._joint_vel_command[:, 0] = torch.cos(yaw_w) * self.processed_actions[:, 0] # x self._joint_vel_command[:, 1] = torch.sin(yaw_w) * self.processed_actions[:, 0] # y self._joint_vel_command[:, 2] = self.processed_actions[:, 1] # yaw # set the joint velocity targets self._asset.set_joint_velocity_target(self._joint_vel_command, joint_ids=self._joint_ids)
5,929
Python
40.760563
119
0.644291
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/joint_actions.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING import carb import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.assets.articulation import Articulation from omni.isaac.orbit.managers.action_manager import ActionTerm if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from . import actions_cfg class JointAction(ActionTerm): r"""Base class for joint actions. This action term performs pre-processing of the raw actions using affine transformations (scale and offset). These transformations can be configured to be applied to a subset of the articulation's joints. Mathematically, the action term is defined as: .. math:: \text{action} = \text{offset} + \text{scaling} \times \text{input action} where :math:`\text{action}` is the action that is sent to the articulation's actuated joints, :math:`\text{offset}` is the offset applied to the input action, :math:`\text{scaling}` is the scaling applied to the input action, and :math:`\text{input action}` is the input action from the user. Based on above, this kind of action transformation ensures that the input and output actions are in the same units and dimensions. The child classes of this action term can then map the output action to a specific desired command of the articulation's joints (e.g. position, velocity, etc.). """ cfg: actions_cfg.JointActionCfg """The configuration of the action term.""" _asset: Articulation """The articulation asset on which the action term is applied.""" _scale: torch.Tensor | float """The scaling factor applied to the input action.""" _offset: torch.Tensor | float """The offset applied to the input action.""" def __init__(self, cfg: actions_cfg.JointActionCfg, env: BaseEnv) -> None: # initialize the action term super().__init__(cfg, env) # resolve the joints over which the action term is applied self._joint_ids, self._joint_names = self._asset.find_joints(self.cfg.joint_names) self._num_joints = len(self._joint_ids) # log the resolved joint names for debugging carb.log_info( f"Resolved joint names for the action term {self.__class__.__name__}:" f" {self._joint_names} [{self._joint_ids}]" ) # Avoid indexing across all joints for efficiency if self._num_joints == self._asset.num_joints: self._joint_ids = slice(None) # create tensors for raw and processed actions self._raw_actions = torch.zeros(self.num_envs, self.action_dim, device=self.device) self._processed_actions = torch.zeros_like(self.raw_actions) # parse scale if isinstance(cfg.scale, (float, int)): self._scale = float(cfg.scale) elif isinstance(cfg.scale, dict): self._scale = torch.ones(self.num_envs, self.action_dim, device=self.device) # resolve the dictionary config index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.scale, self._joint_names) self._scale[:, index_list] = torch.tensor(value_list, device=self.device) else: raise ValueError(f"Unsupported scale type: {type(cfg.scale)}. Supported types are float and dict.") # parse offset if isinstance(cfg.offset, (float, int)): self._offset = float(cfg.offset) elif isinstance(cfg.offset, dict): self._offset = torch.zeros_like(self._raw_actions) # resolve the dictionary config index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.offset, self._joint_names) self._offset[:, index_list] = torch.tensor(value_list, device=self.device) else: raise ValueError(f"Unsupported offset type: {type(cfg.offset)}. Supported types are float and dict.") """ Properties. """ @property def action_dim(self) -> int: return self._num_joints @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations. """ def process_actions(self, actions: torch.Tensor): # store the raw actions self._raw_actions[:] = actions # apply the affine transformations self._processed_actions = self._raw_actions * self._scale + self._offset class JointPositionAction(JointAction): """Joint action term that applies the processed actions to the articulation's joints as position commands.""" cfg: actions_cfg.JointPositionActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.JointPositionActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # use default joint positions as offset if cfg.use_default_offset: self._offset = self._asset.data.default_joint_pos[:, self._joint_ids].clone() def apply_actions(self): # set position targets self._asset.set_joint_position_target(self.processed_actions, joint_ids=self._joint_ids) class RelativeJointPositionAction(JointAction): r"""Joint action term that applies the processed actions to the articulation's joints as relative position commands. Unlike :class:`JointPositionAction`, this action term applies the processed actions as relative position commands. This means that the processed actions are added to the current joint positions of the articulation's joints before being sent as position commands. This means that the action applied at every step is: .. math:: \text{applied action} = \text{current joint positions} + \text{processed actions} where :math:`\text{current joint positions}` are the current joint positions of the articulation's joints. """ cfg: actions_cfg.RelativeJointPositionActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.RelativeJointPositionActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # use zero offset for relative position if cfg.use_zero_offset: self._offset = 0.0 def apply_actions(self): # add current joint positions to the processed actions current_actions = self.processed_actions + self._asset.data.joint_pos[:, self._joint_ids] # set position targets self._asset.set_joint_position_target(current_actions, joint_ids=self._joint_ids) class ExponentialMovingAverageJointPositionAction(JointPositionAction): r"""Joint action term that applies the processed actions to the articulation's joints as exponential moving average position commands. Exponential moving average is a type of moving average that gives more weight to the most recent data points. This action term applies the processed actions as moving average position action commands. The moving average is computed as: .. math:: \text{applied action} = \text{weight} \times \text{processed actions} + (1 - \text{weight}) \times \text{previous applied action} where :math:`\text{weight}` is the weight for the moving average, :math:`\text{processed actions}` are the processed actions, and :math:`\text{previous action}` is the previous action that was applied to the articulation's joints. In the trivial case where the weight is 1.0, the action term behaves exactly like :class:`JointPositionAction`. On reset, the previous action is initialized to the current joint positions of the articulation's joints. """ cfg: actions_cfg.ExponentialMovingAverageJointPositionActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.ExponentialMovingAverageJointPositionActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # parse and save the moving average weight if isinstance(cfg.weight, float): # check that the weight is in the valid range if not 0.0 <= cfg.weight <= 1.0: raise ValueError(f"Moving average weight must be in the range [0, 1]. Got {cfg.weight}.") self._weight = cfg.weight elif isinstance(cfg.weight, dict): self._weight = torch.ones((env.num_envs, self.action_dim), device=self.device) # resolve the dictionary config index_list, names_list, value_list = string_utils.resolve_matching_names_values( cfg.weight, self._joint_names ) # check that the weights are in the valid range for name, value in zip(names_list, value_list): if not 0.0 <= value <= 1.0: raise ValueError( f"Moving average weight must be in the range [0, 1]. Got {value} for joint {name}." ) self._weight[:, index_list] = torch.tensor(value_list, device=self.device) else: raise ValueError( f"Unsupported moving average weight type: {type(cfg.weight)}. Supported types are float and dict." ) # initialize the previous targets self._prev_applied_actions = torch.zeros_like(self.processed_actions) def reset(self, env_ids: Sequence[int] | None = None) -> None: # check if specific environment ids are provided if env_ids is None: env_ids = slice(None) # reset history to current joint positions self._prev_applied_actions[env_ids, :] = self._asset.data.joint_pos[env_ids, self._joint_ids] def apply_actions(self): # set position targets as moving average current_actions = self._weight * self.processed_actions current_actions += (1.0 - self._weight) * self._prev_applied_actions # set position targets self._asset.set_joint_position_target(current_actions, joint_ids=self._joint_ids) # update previous targets self._prev_applied_actions[:] = current_actions[:] class JointVelocityAction(JointAction): """Joint action term that applies the processed actions to the articulation's joints as velocity commands.""" cfg: actions_cfg.JointVelocityActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.JointVelocityActionCfg, env: BaseEnv): # initialize the action term super().__init__(cfg, env) # use default joint velocity as offset if cfg.use_default_offset: self._offset = self._asset.data.default_joint_vel[:, self._joint_ids].clone() def apply_actions(self): # set joint velocity targets self._asset.set_joint_velocity_target(self.processed_actions, joint_ids=self._joint_ids) class JointEffortAction(JointAction): """Joint action term that applies the processed actions to the articulation's joints as effort commands.""" cfg: actions_cfg.JointEffortActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.JointEffortActionCfg, env: BaseEnv): super().__init__(cfg, env) def apply_actions(self): # set joint effort targets self._asset.set_joint_effort_target(self.processed_actions, joint_ids=self._joint_ids)
11,659
Python
41.246377
137
0.669783
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Various action terms that can be used in the environment.""" from .actions_cfg import * from .binary_joint_actions import * from .joint_actions import * from .non_holonomic_actions import *
317
Python
25.499998
63
0.747634
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/actions_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.controllers import DifferentialIKControllerCfg from omni.isaac.orbit.managers.action_manager import ActionTerm, ActionTermCfg from omni.isaac.orbit.utils import configclass from . import binary_joint_actions, joint_actions, non_holonomic_actions, task_space_actions ## # Joint actions. ## @configclass class JointActionCfg(ActionTermCfg): """Configuration for the base joint action term. See :class:`JointAction` for more details. """ joint_names: list[str] = MISSING """List of joint names or regex expressions that the action will be mapped to.""" scale: float | dict[str, float] = 1.0 """Scale factor for the action (float or dict of regex expressions). Defaults to 1.0.""" offset: float | dict[str, float] = 0.0 """Offset factor for the action (float or dict of regex expressions). Defaults to 0.0.""" @configclass class JointPositionActionCfg(JointActionCfg): """Configuration for the joint position action term. See :class:`JointPositionAction` for more details. """ class_type: type[ActionTerm] = joint_actions.JointPositionAction use_default_offset: bool = True """Whether to use default joint positions configured in the articulation asset as offset. Defaults to True. If True, this flag results in overwriting the values of :attr:`offset` to the default joint positions from the articulation asset. """ @configclass class RelativeJointPositionActionCfg(JointActionCfg): """Configuration for the relative joint position action term. See :class:`RelativeJointPositionAction` for more details. """ class_type: type[ActionTerm] = joint_actions.RelativeJointPositionAction use_zero_offset: bool = True """Whether to ignore the offset defined in articulation asset. Defaults to True. If True, this flag results in overwriting the values of :attr:`offset` to zero. """ @configclass class ExponentialMovingAverageJointPositionActionCfg(JointPositionActionCfg): """Configuration for the exponential moving average joint position action term. See :class:`ExponentialMovingAverageJointPositionAction` for more details. """ class_type: type[ActionTerm] = joint_actions.ExponentialMovingAverageJointPositionAction weight: float | dict[str, float] = 1.0 """The weight for the moving average (float or dict of regex expressions). Defaults to 1.0. If set to 1.0, the processed action is applied directly without any moving average window. """ @configclass class JointVelocityActionCfg(JointActionCfg): """Configuration for the joint velocity action term. See :class:`JointVelocityAction` for more details. """ class_type: type[ActionTerm] = joint_actions.JointVelocityAction use_default_offset: bool = True """Whether to use default joint velocities configured in the articulation asset as offset. Defaults to True. This overrides the settings from :attr:`offset` if set to True. """ @configclass class JointEffortActionCfg(JointActionCfg): """Configuration for the joint effort action term. See :class:`JointEffortAction` for more details. """ class_type: type[ActionTerm] = joint_actions.JointEffortAction ## # Gripper actions. ## @configclass class BinaryJointActionCfg(ActionTermCfg): """Configuration for the base binary joint action term. See :class:`BinaryJointAction` for more details. """ joint_names: list[str] = MISSING """List of joint names or regex expressions that the action will be mapped to.""" open_command_expr: dict[str, float] = MISSING """The joint command to move to *open* configuration.""" close_command_expr: dict[str, float] = MISSING """The joint command to move to *close* configuration.""" @configclass class BinaryJointPositionActionCfg(BinaryJointActionCfg): """Configuration for the binary joint position action term. See :class:`BinaryJointPositionAction` for more details. """ class_type: type[ActionTerm] = binary_joint_actions.BinaryJointPositionAction @configclass class BinaryJointVelocityActionCfg(BinaryJointActionCfg): """Configuration for the binary joint velocity action term. See :class:`BinaryJointVelocityAction` for more details. """ class_type: type[ActionTerm] = binary_joint_actions.BinaryJointVelocityAction ## # Non-holonomic actions. ## @configclass class NonHolonomicActionCfg(ActionTermCfg): """Configuration for the non-holonomic action term with dummy joints at the base. See :class:`NonHolonomicAction` for more details. """ class_type: type[ActionTerm] = non_holonomic_actions.NonHolonomicAction body_name: str = MISSING """Name of the body which has the dummy mechanism connected to.""" x_joint_name: str = MISSING """The dummy joint name in the x direction.""" y_joint_name: str = MISSING """The dummy joint name in the y direction.""" yaw_joint_name: str = MISSING """The dummy joint name in the yaw direction.""" scale: tuple[float, float] = (1.0, 1.0) """Scale factor for the action. Defaults to (1.0, 1.0).""" offset: tuple[float, float] = (0.0, 0.0) """Offset factor for the action. Defaults to (0.0, 0.0).""" ## # Task-space Actions. ## @configclass class DifferentialInverseKinematicsActionCfg(ActionTermCfg): """Configuration for inverse differential kinematics action term. See :class:`DifferentialInverseKinematicsAction` for more details. """ @configclass class OffsetCfg: """The offset pose from parent frame to child frame. On many robots, end-effector frames are fictitious frames that do not have a corresponding rigid body. In such cases, it is easier to define this transform w.r.t. their parent rigid body. For instance, for the Franka Emika arm, the end-effector is defined at an offset to the the "panda_hand" frame. """ pos: tuple[float, float, float] = (0.0, 0.0, 0.0) """Translation w.r.t. the parent frame. Defaults to (0.0, 0.0, 0.0).""" rot: tuple[float, float, float, float] = (1.0, 0.0, 0.0, 0.0) """Quaternion rotation ``(w, x, y, z)`` w.r.t. the parent frame. Defaults to (1.0, 0.0, 0.0, 0.0).""" class_type: type[ActionTerm] = task_space_actions.DifferentialInverseKinematicsAction joint_names: list[str] = MISSING """List of joint names or regex expressions that the action will be mapped to.""" body_name: str = MISSING """Name of the body or frame for which IK is performed.""" body_offset: OffsetCfg | None = None """Offset of target frame w.r.t. to the body frame. Defaults to None, in which case no offset is applied.""" scale: float | tuple[float, ...] = 1.0 """Scale factor for the action. Defaults to 1.0.""" controller: DifferentialIKControllerCfg = MISSING """The configuration for the differential IK controller."""
7,163
Python
31.563636
112
0.710596
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/actions/binary_joint_actions.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import carb import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.assets.articulation import Articulation from omni.isaac.orbit.managers.action_manager import ActionTerm if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from . import actions_cfg class BinaryJointAction(ActionTerm): """Base class for binary joint actions. This action term maps a binary action to the *open* or *close* joint configurations. These configurations are specified through the :class:`BinaryJointActionCfg` object. If the input action is a float vector, the action is considered binary based on the sign of the action values. Based on above, we follow the following convention for the binary action: 1. Open action: 1 (bool) or positive values (float). 2. Close action: 0 (bool) or negative values (float). The action term can mostly be used for gripper actions, where the gripper is either open or closed. This helps in devising a mimicking mechanism for the gripper, since in simulation it is often not possible to add such constraints to the gripper. """ cfg: actions_cfg.BinaryJointActionCfg """The configuration of the action term.""" _asset: Articulation """The articulation asset on which the action term is applied.""" def __init__(self, cfg: actions_cfg.BinaryJointActionCfg, env: BaseEnv) -> None: # initialize the action term super().__init__(cfg, env) # resolve the joints over which the action term is applied self._joint_ids, self._joint_names = self._asset.find_joints(self.cfg.joint_names) self._num_joints = len(self._joint_ids) # log the resolved joint names for debugging carb.log_info( f"Resolved joint names for the action term {self.__class__.__name__}:" f" {self._joint_names} [{self._joint_ids}]" ) # create tensors for raw and processed actions self._raw_actions = torch.zeros(self.num_envs, 1, device=self.device) self._processed_actions = torch.zeros(self.num_envs, self._num_joints, device=self.device) # parse open command self._open_command = torch.zeros(self._num_joints, device=self.device) index_list, name_list, value_list = string_utils.resolve_matching_names_values( self.cfg.open_command_expr, self._joint_names ) if len(index_list) != self._num_joints: raise ValueError( f"Could not resolve all joints for the action term. Missing: {set(self._joint_names) - set(name_list)}" ) self._open_command[index_list] = torch.tensor(value_list, device=self.device) # parse close command self._close_command = torch.zeros_like(self._open_command) index_list, name_list, value_list = string_utils.resolve_matching_names_values( self.cfg.close_command_expr, self._joint_names ) if len(index_list) != self._num_joints: raise ValueError( f"Could not resolve all joints for the action term. Missing: {set(self._joint_names) - set(name_list)}" ) self._close_command[index_list] = torch.tensor(value_list, device=self.device) """ Properties. """ @property def action_dim(self) -> int: return 1 @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations. """ def process_actions(self, actions: torch.Tensor): # store the raw actions self._raw_actions[:] = actions # compute the binary mask if actions.dtype == torch.bool: # true: close, false: open binary_mask = actions == 0 else: # true: close, false: open binary_mask = actions < 0 # compute the command self._processed_actions = torch.where(binary_mask, self._close_command, self._open_command) class BinaryJointPositionAction(BinaryJointAction): """Binary joint action that sets the binary action into joint position targets.""" cfg: actions_cfg.BinaryJointPositionActionCfg """The configuration of the action term.""" def apply_actions(self): self._asset.set_joint_position_target(self._processed_actions, joint_ids=self._joint_ids) class BinaryJointVelocityAction(BinaryJointAction): """Binary joint action that sets the binary action into joint velocity targets.""" cfg: actions_cfg.BinaryJointVelocityActionCfg """The configuration of the action term.""" def apply_actions(self): self._asset.set_joint_velocity_target(self._processed_actions, joint_ids=self._joint_ids)
5,021
Python
35.656934
119
0.667994
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/commands_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math from dataclasses import MISSING from omni.isaac.orbit.managers import CommandTermCfg from omni.isaac.orbit.utils import configclass from .null_command import NullCommand from .pose_2d_command import TerrainBasedPose2dCommand, UniformPose2dCommand from .pose_command import UniformPoseCommand from .velocity_command import NormalVelocityCommand, UniformVelocityCommand @configclass class NullCommandCfg(CommandTermCfg): """Configuration for the null command generator.""" class_type: type = NullCommand def __post_init__(self): """Post initialization.""" # set the resampling time range to infinity to avoid resampling self.resampling_time_range = (math.inf, math.inf) @configclass class UniformVelocityCommandCfg(CommandTermCfg): """Configuration for the uniform velocity command generator.""" class_type: type = UniformVelocityCommand asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" heading_command: bool = MISSING """Whether to use heading command or angular velocity command. If True, the angular velocity command is computed from the heading error, where the target heading is sampled uniformly from provided range. Otherwise, the angular velocity command is sampled uniformly from provided range. """ heading_control_stiffness: float = MISSING """Scale factor to convert the heading error to angular velocity command.""" rel_standing_envs: float = MISSING """Probability threshold for environments where the robots that are standing still.""" rel_heading_envs: float = MISSING """Probability threshold for environments where the robots follow the heading-based angular velocity command (the others follow the sampled angular velocity command).""" @configclass class Ranges: """Uniform distribution ranges for the velocity commands.""" lin_vel_x: tuple[float, float] = MISSING # min max [m/s] lin_vel_y: tuple[float, float] = MISSING # min max [m/s] ang_vel_z: tuple[float, float] = MISSING # min max [rad/s] heading: tuple[float, float] = MISSING # min max [rad] ranges: Ranges = MISSING """Distribution ranges for the velocity commands.""" @configclass class NormalVelocityCommandCfg(UniformVelocityCommandCfg): """Configuration for the normal velocity command generator.""" class_type: type = NormalVelocityCommand heading_command: bool = False # --> we don't use heading command for normal velocity command. @configclass class Ranges: """Normal distribution ranges for the velocity commands.""" mean_vel: tuple[float, float, float] = MISSING """Mean velocity for the normal distribution. The tuple contains the mean linear-x, linear-y, and angular-z velocity. """ std_vel: tuple[float, float, float] = MISSING """Standard deviation for the normal distribution. The tuple contains the standard deviation linear-x, linear-y, and angular-z velocity. """ zero_prob: tuple[float, float, float] = MISSING """Probability of zero velocity for the normal distribution. The tuple contains the probability of zero linear-x, linear-y, and angular-z velocity. """ ranges: Ranges = MISSING """Distribution ranges for the velocity commands.""" @configclass class UniformPoseCommandCfg(CommandTermCfg): """Configuration for uniform pose command generator.""" class_type: type = UniformPoseCommand asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" body_name: str = MISSING """Name of the body in the asset for which the commands are generated.""" @configclass class Ranges: """Uniform distribution ranges for the pose commands.""" pos_x: tuple[float, float] = MISSING # min max [m] pos_y: tuple[float, float] = MISSING # min max [m] pos_z: tuple[float, float] = MISSING # min max [m] roll: tuple[float, float] = MISSING # min max [rad] pitch: tuple[float, float] = MISSING # min max [rad] yaw: tuple[float, float] = MISSING # min max [rad] ranges: Ranges = MISSING """Ranges for the commands.""" @configclass class UniformPose2dCommandCfg(CommandTermCfg): """Configuration for the uniform 2D-pose command generator.""" class_type: type = UniformPose2dCommand asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" simple_heading: bool = MISSING """Whether to use simple heading or not. If True, the heading is in the direction of the target position. """ @configclass class Ranges: """Uniform distribution ranges for the position commands.""" pos_x: tuple[float, float] = MISSING """Range for the x position (in m).""" pos_y: tuple[float, float] = MISSING """Range for the y position (in m).""" heading: tuple[float, float] = MISSING """Heading range for the position commands (in rad). Used only if :attr:`simple_heading` is False. """ ranges: Ranges = MISSING """Distribution ranges for the position commands.""" @configclass class TerrainBasedPose2dCommandCfg(UniformPose2dCommandCfg): """Configuration for the terrain-based position command generator.""" class_type = TerrainBasedPose2dCommand @configclass class Ranges: """Uniform distribution ranges for the position commands.""" heading: tuple[float, float] = MISSING """Heading range for the position commands (in rad). Used only if :attr:`simple_heading` is False. """ ranges: Ranges = MISSING """Distribution ranges for the sampled commands."""
6,065
Python
33.465909
112
0.688541
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/pose_2d_command.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for the 2D-pose for locomotion tasks.""" from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import CommandTerm from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import GREEN_ARROW_X_MARKER_CFG from omni.isaac.orbit.terrains import TerrainImporter from omni.isaac.orbit.utils.math import quat_from_euler_xyz, quat_rotate_inverse, wrap_to_pi, yaw_quat if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from .commands_cfg import TerrainBasedPose2dCommandCfg, UniformPose2dCommandCfg class UniformPose2dCommand(CommandTerm): """Command generator that generates pose commands containing a 3-D position and heading. The command generator samples uniform 2D positions around the environment origin. It sets the height of the position command to the default root height of the robot. The heading command is either set to point towards the target or is sampled uniformly. This can be configured through the :attr:`Pose2dCommandCfg.simple_heading` parameter in the configuration. """ cfg: UniformPose2dCommandCfg """Configuration for the command generator.""" def __init__(self, cfg: UniformPose2dCommandCfg, env: BaseEnv): """Initialize the command generator class. Args: cfg: The configuration parameters for the command generator. env: The environment object. """ # initialize the base class super().__init__(cfg, env) # obtain the robot and terrain assets # -- robot self.robot: Articulation = env.scene[cfg.asset_name] # crete buffers to store the command # -- commands: (x, y, z, heading) self.pos_command_w = torch.zeros(self.num_envs, 3, device=self.device) self.heading_command_w = torch.zeros(self.num_envs, device=self.device) self.pos_command_b = torch.zeros_like(self.pos_command_w) self.heading_command_b = torch.zeros_like(self.heading_command_w) # -- metrics self.metrics["error_pos"] = torch.zeros(self.num_envs, device=self.device) self.metrics["error_heading"] = torch.zeros(self.num_envs, device=self.device) def __str__(self) -> str: msg = "PositionCommand:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" msg += f"\tResampling time range: {self.cfg.resampling_time_range}" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired 2D-pose in base frame. Shape is (num_envs, 4).""" return torch.cat([self.pos_command_b, self.heading_command_b.unsqueeze(1)], dim=1) """ Implementation specific functions. """ def _update_metrics(self): # logs data self.metrics["error_pos_2d"] = torch.norm(self.pos_command_w[:, :2] - self.robot.data.root_pos_w[:, :2], dim=1) self.metrics["error_heading"] = torch.abs(wrap_to_pi(self.heading_command_w - self.robot.data.heading_w)) def _resample_command(self, env_ids: Sequence[int]): # obtain env origins for the environments self.pos_command_w[env_ids] = self._env.scene.env_origins[env_ids] # offset the position command by the current root position r = torch.empty(len(env_ids), device=self.device) self.pos_command_w[env_ids, 0] += r.uniform_(*self.cfg.ranges.pos_x) self.pos_command_w[env_ids, 1] += r.uniform_(*self.cfg.ranges.pos_y) self.pos_command_w[env_ids, 2] += self.robot.data.default_root_state[env_ids, 2] if self.cfg.simple_heading: # set heading command to point towards target target_vec = self.pos_command_w[env_ids] - self.robot.data.root_pos_w[env_ids] target_direction = torch.atan2(target_vec[:, 1], target_vec[:, 0]) flipped_target_direction = wrap_to_pi(target_direction + torch.pi) # compute errors to find the closest direction to the current heading # this is done to avoid the discontinuity at the -pi/pi boundary curr_to_target = wrap_to_pi(target_direction - self.robot.data.heading_w[env_ids]).abs() curr_to_flipped_target = wrap_to_pi(flipped_target_direction - self.robot.data.heading_w[env_ids]).abs() # set the heading command to the closest direction self.heading_command_w[env_ids] = torch.where( curr_to_target < curr_to_flipped_target, target_direction, flipped_target_direction, ) else: # random heading command self.heading_command_w[env_ids] = r.uniform_(*self.cfg.ranges.heading) def _update_command(self): """Re-target the position command to the current root state.""" target_vec = self.pos_command_w - self.robot.data.root_pos_w[:, :3] self.pos_command_b[:] = quat_rotate_inverse(yaw_quat(self.robot.data.root_quat_w), target_vec) self.heading_command_b[:] = wrap_to_pi(self.heading_command_w - self.robot.data.heading_w) def _set_debug_vis_impl(self, debug_vis: bool): # create markers if necessary for the first tome if debug_vis: if not hasattr(self, "arrow_goal_visualizer"): marker_cfg = GREEN_ARROW_X_MARKER_CFG.copy() marker_cfg.markers["arrow"].scale = (0.2, 0.2, 0.8) marker_cfg.prim_path = "/Visuals/Command/pose_goal" self.arrow_goal_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.arrow_goal_visualizer.set_visibility(True) else: if hasattr(self, "arrow_goal_visualizer"): self.arrow_goal_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # update the box marker self.arrow_goal_visualizer.visualize( translations=self.pos_command_w, orientations=quat_from_euler_xyz( torch.zeros_like(self.heading_command_w), torch.zeros_like(self.heading_command_w), self.heading_command_w, ), ) class TerrainBasedPose2dCommand(UniformPose2dCommand): """Command generator that generates pose commands based on the terrain. This command generator samples the position commands from the valid patches of the terrain. The heading commands are either set to point towards the target or are sampled uniformly. It expects the terrain to have a valid flat patches under the key 'target'. """ cfg: TerrainBasedPose2dCommandCfg """Configuration for the command generator.""" def __init__(self, cfg: TerrainBasedPose2dCommandCfg, env: BaseEnv): # initialize the base class super().__init__(cfg, env) # obtain the terrain asset self.terrain: TerrainImporter = env.scene["terrain"] # obtain the valid targets from the terrain if "target" not in self.terrain.flat_patches: raise RuntimeError( "The terrain-based command generator requires a valid flat patch under 'target' in the terrain." f" Found: {list(self.terrain.flat_patches.keys())}" ) # valid targets: (terrain_level, terrain_type, num_patches, 3) self.valid_targets: torch.Tensor = self.terrain.flat_patches["target"] def _resample_command(self, env_ids: Sequence[int]): # sample new position targets from the terrain ids = torch.randint(0, self.valid_targets.shape[2], size=(len(env_ids),), device=self.device) self.pos_command_w[env_ids] = self.valid_targets[ self.terrain.terrain_levels[env_ids], self.terrain.terrain_types[env_ids], ids ] # offset the position command by the current root height self.pos_command_w[env_ids, 2] += self.robot.data.default_root_state[env_ids, 2] if self.cfg.simple_heading: # set heading command to point towards target target_vec = self.pos_command_w[env_ids] - self.robot.data.root_pos_w[env_ids] target_direction = torch.atan2(target_vec[:, 1], target_vec[:, 0]) flipped_target_direction = wrap_to_pi(target_direction + torch.pi) # compute errors to find the closest direction to the current heading # this is done to avoid the discontinuity at the -pi/pi boundary curr_to_target = wrap_to_pi(target_direction - self.robot.data.heading_w[env_ids]).abs() curr_to_flipped_target = wrap_to_pi(flipped_target_direction - self.robot.data.heading_w[env_ids]).abs() # set the heading command to the closest direction self.heading_command_w[env_ids] = torch.where( curr_to_target < curr_to_flipped_target, target_direction, flipped_target_direction, ) else: # random heading command r = torch.empty(len(env_ids), device=self.device) self.heading_command_w[env_ids] = r.uniform_(*self.cfg.ranges.heading)
9,435
Python
44.365384
119
0.649921
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/velocity_command.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for the velocity-based locomotion task.""" from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import CommandTerm from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import BLUE_ARROW_X_MARKER_CFG, GREEN_ARROW_X_MARKER_CFG if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from .commands_cfg import NormalVelocityCommandCfg, UniformVelocityCommandCfg class UniformVelocityCommand(CommandTerm): r"""Command generator that generates a velocity command in SE(2) from uniform distribution. The command comprises of a linear velocity in x and y direction and an angular velocity around the z-axis. It is given in the robot's base frame. If the :attr:`cfg.heading_command` flag is set to True, the angular velocity is computed from the heading error similar to doing a proportional control on the heading error. The target heading is sampled uniformly from the provided range. Otherwise, the angular velocity is sampled uniformly from the provided range. Mathematically, the angular velocity is computed as follows from the heading command: .. math:: \omega_z = \frac{1}{2} \text{wrap_to_pi}(\theta_{\text{target}} - \theta_{\text{current}}) """ cfg: UniformVelocityCommandCfg """The configuration of the command generator.""" def __init__(self, cfg: UniformVelocityCommandCfg, env: BaseEnv): """Initialize the command generator. Args: cfg: The configuration of the command generator. env: The environment. """ # initialize the base class super().__init__(cfg, env) # obtain the robot asset # -- robot self.robot: Articulation = env.scene[cfg.asset_name] # crete buffers to store the command # -- command: x vel, y vel, yaw vel, heading self.vel_command_b = torch.zeros(self.num_envs, 3, device=self.device) self.heading_target = torch.zeros(self.num_envs, device=self.device) self.is_heading_env = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) self.is_standing_env = torch.zeros_like(self.is_heading_env) # -- metrics self.metrics["error_vel_xy"] = torch.zeros(self.num_envs, device=self.device) self.metrics["error_vel_yaw"] = torch.zeros(self.num_envs, device=self.device) def __str__(self) -> str: """Return a string representation of the command generator.""" msg = "UniformVelocityCommand:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" msg += f"\tResampling time range: {self.cfg.resampling_time_range}\n" msg += f"\tHeading command: {self.cfg.heading_command}\n" if self.cfg.heading_command: msg += f"\tHeading probability: {self.cfg.rel_heading_envs}\n" msg += f"\tStanding probability: {self.cfg.rel_standing_envs}" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired base velocity command in the base frame. Shape is (num_envs, 3).""" return self.vel_command_b """ Implementation specific functions. """ def _update_metrics(self): # time for which the command was executed max_command_time = self.cfg.resampling_time_range[1] max_command_step = max_command_time / self._env.step_dt # logs data self.metrics["error_vel_xy"] += ( torch.norm(self.vel_command_b[:, :2] - self.robot.data.root_lin_vel_b[:, :2], dim=-1) / max_command_step ) self.metrics["error_vel_yaw"] += ( torch.abs(self.vel_command_b[:, 2] - self.robot.data.root_ang_vel_b[:, 2]) / max_command_step ) def _resample_command(self, env_ids: Sequence[int]): # sample velocity commands r = torch.empty(len(env_ids), device=self.device) # -- linear velocity - x direction self.vel_command_b[env_ids, 0] = r.uniform_(*self.cfg.ranges.lin_vel_x) # -- linear velocity - y direction self.vel_command_b[env_ids, 1] = r.uniform_(*self.cfg.ranges.lin_vel_y) # -- ang vel yaw - rotation around z self.vel_command_b[env_ids, 2] = r.uniform_(*self.cfg.ranges.ang_vel_z) # heading target if self.cfg.heading_command: self.heading_target[env_ids] = r.uniform_(*self.cfg.ranges.heading) # update heading envs self.is_heading_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.rel_heading_envs # update standing envs self.is_standing_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.rel_standing_envs def _update_command(self): """Post-processes the velocity command. This function sets velocity command to zero for standing environments and computes angular velocity from heading direction if the heading_command flag is set. """ # Compute angular velocity from heading direction if self.cfg.heading_command: # resolve indices of heading envs env_ids = self.is_heading_env.nonzero(as_tuple=False).flatten() # compute angular velocity heading_error = math_utils.wrap_to_pi(self.heading_target[env_ids] - self.robot.data.heading_w[env_ids]) self.vel_command_b[env_ids, 2] = torch.clip( self.cfg.heading_control_stiffness * heading_error, min=self.cfg.ranges.ang_vel_z[0], max=self.cfg.ranges.ang_vel_z[1], ) # Enforce standing (i.e., zero velocity command) for standing envs # TODO: check if conversion is needed standing_env_ids = self.is_standing_env.nonzero(as_tuple=False).flatten() self.vel_command_b[standing_env_ids, :] = 0.0 def _set_debug_vis_impl(self, debug_vis: bool): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first tome if not hasattr(self, "base_vel_goal_visualizer"): # -- goal marker_cfg = GREEN_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Command/velocity_goal" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_goal_visualizer = VisualizationMarkers(marker_cfg) # -- current marker_cfg = BLUE_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Command/velocity_current" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.base_vel_goal_visualizer.set_visibility(True) self.base_vel_visualizer.set_visibility(True) else: if hasattr(self, "base_vel_goal_visualizer"): self.base_vel_goal_visualizer.set_visibility(False) self.base_vel_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # get marker location # -- base state base_pos_w = self.robot.data.root_pos_w.clone() base_pos_w[:, 2] += 0.5 # -- resolve the scales and quaternions vel_des_arrow_scale, vel_des_arrow_quat = self._resolve_xy_velocity_to_arrow(self.command[:, :2]) vel_arrow_scale, vel_arrow_quat = self._resolve_xy_velocity_to_arrow(self.robot.data.root_lin_vel_b[:, :2]) # display markers self.base_vel_goal_visualizer.visualize(base_pos_w, vel_des_arrow_quat, vel_des_arrow_scale) self.base_vel_visualizer.visualize(base_pos_w, vel_arrow_quat, vel_arrow_scale) """ Internal helpers. """ def _resolve_xy_velocity_to_arrow(self, xy_velocity: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: """Converts the XY base velocity command to arrow direction rotation.""" # obtain default scale of the marker default_scale = self.base_vel_goal_visualizer.cfg.markers["arrow"].scale # arrow-scale arrow_scale = torch.tensor(default_scale, device=self.device).repeat(xy_velocity.shape[0], 1) arrow_scale[:, 0] *= torch.linalg.norm(xy_velocity, dim=1) * 3.0 # arrow-direction heading_angle = torch.atan2(xy_velocity[:, 1], xy_velocity[:, 0]) zeros = torch.zeros_like(heading_angle) arrow_quat = math_utils.quat_from_euler_xyz(zeros, zeros, heading_angle) # convert everything back from base to world frame base_quat_w = self.robot.data.root_quat_w arrow_quat = math_utils.quat_mul(base_quat_w, arrow_quat) return arrow_scale, arrow_quat class NormalVelocityCommand(UniformVelocityCommand): """Command generator that generates a velocity command in SE(2) from a normal distribution. The command comprises of a linear velocity in x and y direction and an angular velocity around the z-axis. It is given in the robot's base frame. The command is sampled from a normal distribution with mean and standard deviation specified in the configuration. With equal probability, the sign of the individual components is flipped. """ cfg: NormalVelocityCommandCfg """The command generator configuration.""" def __init__(self, cfg: NormalVelocityCommandCfg, env: object): """Initializes the command generator. Args: cfg: The command generator configuration. env: The environment. """ super().__init__(self, cfg, env) # create buffers for zero commands envs self.is_zero_vel_x_env = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) self.is_zero_vel_y_env = torch.zeros_like(self.is_zero_vel_x_env) self.is_zero_vel_yaw_env = torch.zeros_like(self.is_zero_vel_x_env) def __str__(self) -> str: """Return a string representation of the command generator.""" msg = "NormalVelocityCommand:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" msg += f"\tResampling time range: {self.cfg.resampling_time_range}\n" msg += f"\tStanding probability: {self.cfg.rel_standing_envs}" return msg def _resample_command(self, env_ids): # sample velocity commands r = torch.empty(len(env_ids), device=self.device) # -- linear velocity - x direction self.vel_command_b[env_ids, 0] = r.normal_(mean=self.cfg.ranges.mean_vel[0], std=self.cfg.ranges.std_vel[0]) self.vel_command_b[env_ids, 0] *= torch.where(r.uniform_(0.0, 1.0) <= 0.5, 1.0, -1.0) # -- linear velocity - y direction self.vel_command_b[env_ids, 1] = r.normal_(mean=self.cfg.ranges.mean_vel[1], std=self.cfg.ranges.std_vel[1]) self.vel_command_b[env_ids, 1] *= torch.where(r.uniform_(0.0, 1.0) <= 0.5, 1.0, -1.0) # -- angular velocity - yaw direction self.vel_command_b[env_ids, 2] = r.normal_(mean=self.cfg.ranges.mean_vel[2], std=self.cfg.ranges.std_vel[2]) self.vel_command_b[env_ids, 2] *= torch.where(r.uniform_(0.0, 1.0) <= 0.5, 1.0, -1.0) # update element wise zero velocity command # TODO what is zero prob ? self.is_zero_vel_x_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.ranges.zero_prob[0] self.is_zero_vel_y_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.ranges.zero_prob[1] self.is_zero_vel_yaw_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.ranges.zero_prob[2] # update standing envs self.is_standing_env[env_ids] = r.uniform_(0.0, 1.0) <= self.cfg.rel_standing_envs def _update_command(self): """Sets velocity command to zero for standing envs.""" # Enforce standing (i.e., zero velocity command) for standing envs standing_env_ids = self.is_standing_env.nonzero(as_tuple=False).flatten() # TODO check if conversion is needed self.vel_command_b[standing_env_ids, :] = 0.0 # Enforce zero velocity for individual elements # TODO: check if conversion is needed zero_vel_x_env_ids = self.is_zero_vel_x_env.nonzero(as_tuple=False).flatten() zero_vel_y_env_ids = self.is_zero_vel_y_env.nonzero(as_tuple=False).flatten() zero_vel_yaw_env_ids = self.is_zero_vel_yaw_env.nonzero(as_tuple=False).flatten() self.vel_command_b[zero_vel_x_env_ids, 0] = 0.0 self.vel_command_b[zero_vel_y_env_ids, 1] = 0.0 self.vel_command_b[zero_vel_yaw_env_ids, 2] = 0.0
12,959
Python
46.29927
119
0.641408
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/pose_command.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for pose tracking.""" from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import CommandTerm from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG from omni.isaac.orbit.utils.math import combine_frame_transforms, compute_pose_error, quat_from_euler_xyz if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv from .commands_cfg import UniformPoseCommandCfg class UniformPoseCommand(CommandTerm): """Command generator for generating pose commands uniformly. The command generator generates poses by sampling positions uniformly within specified regions in cartesian space. For orientation, it samples uniformly the euler angles (roll-pitch-yaw) and converts them into quaternion representation (w, x, y, z). The position and orientation commands are generated in the base frame of the robot, and not the simulation world frame. This means that users need to handle the transformation from the base frame to the simulation world frame themselves. .. caution:: Sampling orientations uniformly is not strictly the same as sampling euler angles uniformly. This is because rotations are defined by 3D non-Euclidean space, and the mapping from euler angles to rotations is not one-to-one. """ cfg: UniformPoseCommandCfg """Configuration for the command generator.""" def __init__(self, cfg: UniformPoseCommandCfg, env: BaseEnv): """Initialize the command generator class. Args: cfg: The configuration parameters for the command generator. env: The environment object. """ # initialize the base class super().__init__(cfg, env) # extract the robot and body index for which the command is generated self.robot: Articulation = env.scene[cfg.asset_name] self.body_idx = self.robot.find_bodies(cfg.body_name)[0][0] # create buffers # -- commands: (x, y, z, qw, qx, qy, qz) in root frame self.pose_command_b = torch.zeros(self.num_envs, 7, device=self.device) self.pose_command_b[:, 3] = 1.0 self.pose_command_w = torch.zeros_like(self.pose_command_b) # -- metrics self.metrics["position_error"] = torch.zeros(self.num_envs, device=self.device) self.metrics["orientation_error"] = torch.zeros(self.num_envs, device=self.device) def __str__(self) -> str: msg = "UniformPoseCommand:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" msg += f"\tResampling time range: {self.cfg.resampling_time_range}\n" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired pose command. Shape is (num_envs, 7). The first three elements correspond to the position, followed by the quaternion orientation in (w, x, y, z). """ return self.pose_command_b """ Implementation specific functions. """ def _update_metrics(self): # transform command from base frame to simulation world frame self.pose_command_w[:, :3], self.pose_command_w[:, 3:] = combine_frame_transforms( self.robot.data.root_pos_w, self.robot.data.root_quat_w, self.pose_command_b[:, :3], self.pose_command_b[:, 3:], ) # compute the error pos_error, rot_error = compute_pose_error( self.pose_command_w[:, :3], self.pose_command_w[:, 3:], self.robot.data.body_state_w[:, self.body_idx, :3], self.robot.data.body_state_w[:, self.body_idx, 3:7], ) self.metrics["position_error"] = torch.norm(pos_error, dim=-1) self.metrics["orientation_error"] = torch.norm(rot_error, dim=-1) def _resample_command(self, env_ids: Sequence[int]): # sample new pose targets # -- position r = torch.empty(len(env_ids), device=self.device) self.pose_command_b[env_ids, 0] = r.uniform_(*self.cfg.ranges.pos_x) self.pose_command_b[env_ids, 1] = r.uniform_(*self.cfg.ranges.pos_y) self.pose_command_b[env_ids, 2] = r.uniform_(*self.cfg.ranges.pos_z) # -- orientation euler_angles = torch.zeros_like(self.pose_command_b[env_ids, :3]) euler_angles[:, 0].uniform_(*self.cfg.ranges.roll) euler_angles[:, 1].uniform_(*self.cfg.ranges.pitch) euler_angles[:, 2].uniform_(*self.cfg.ranges.yaw) self.pose_command_b[env_ids, 3:] = quat_from_euler_xyz( euler_angles[:, 0], euler_angles[:, 1], euler_angles[:, 2] ) def _update_command(self): pass def _set_debug_vis_impl(self, debug_vis: bool): # create markers if necessary for the first tome if debug_vis: if not hasattr(self, "goal_pose_visualizer"): marker_cfg = FRAME_MARKER_CFG.copy() marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1) # -- goal pose marker_cfg.prim_path = "/Visuals/Command/goal_pose" self.goal_pose_visualizer = VisualizationMarkers(marker_cfg) # -- current body pose marker_cfg.prim_path = "/Visuals/Command/body_pose" self.body_pose_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.goal_pose_visualizer.set_visibility(True) self.body_pose_visualizer.set_visibility(True) else: if hasattr(self, "goal_pose_visualizer"): self.goal_pose_visualizer.set_visibility(False) self.body_pose_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # update the markers # -- goal pose self.goal_pose_visualizer.visualize(self.pose_command_w[:, :3], self.pose_command_w[:, 3:]) # -- current body pose body_pose_w = self.robot.data.body_state_w[:, self.body_idx] self.body_pose_visualizer.visualize(body_pose_w[:, :3], body_pose_w[:, 3:7])
6,437
Python
40.006369
116
0.63803
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/null_command.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generator that does nothing.""" from __future__ import annotations from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.managers import CommandTerm if TYPE_CHECKING: from .commands_cfg import NullCommandCfg class NullCommand(CommandTerm): """Command generator that does nothing. This command generator does not generate any commands. It is used for environments that do not require any commands. """ cfg: NullCommandCfg """Configuration for the command generator.""" def __str__(self) -> str: msg = "NullCommand:\n" msg += "\tCommand dimension: N/A\n" msg += f"\tResampling time range: {self.cfg.resampling_time_range}" return msg """ Properties """ @property def command(self): """Null command. Raises: RuntimeError: No command is generated. Always raises this error. """ raise RuntimeError("NullCommandTerm does not generate any commands.") """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: return {} def compute(self, dt: float): pass """ Implementation specific functions. """ def _update_metrics(self): pass def _resample_command(self, env_ids: Sequence[int]): pass def _update_command(self): pass
1,574
Python
21.5
98
0.640407
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/envs/mdp/commands/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Various command terms that can be used in the environment.""" from .commands_cfg import ( NormalVelocityCommandCfg, NullCommandCfg, TerrainBasedPose2dCommandCfg, UniformPose2dCommandCfg, UniformPoseCommandCfg, UniformVelocityCommandCfg, ) from .null_command import NullCommand from .pose_2d_command import TerrainBasedPose2dCommand, UniformPose2dCommand from .pose_command import UniformPoseCommand from .velocity_command import NormalVelocityCommand, UniformVelocityCommand
626
Python
30.349998
76
0.801917
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/observation_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Observation manager for computing observation signals for a given world.""" from __future__ import annotations import torch from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import ObservationGroupCfg, ObservationTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv class ObservationManager(ManagerBase): """Manager for computing observation signals for a given world. Observations are organized into groups based on their intended usage. This allows having different observation groups for different types of learning such as asymmetric actor-critic and student-teacher training. Each group contains observation terms which contain information about the observation function to call, the noise corruption model to use, and the sensor to retrieve data from. Each observation group should inherit from the :class:`ObservationGroupCfg` class. Within each group, each observation term should instantiate the :class:`ObservationTermCfg` class. """ def __init__(self, cfg: object, env: BaseEnv): """Initialize observation manager. Args: cfg: The configuration object or dictionary (``dict[str, ObservationGroupCfg]``). env: The environment instance. """ super().__init__(cfg, env) # compute combined vector for obs group self._group_obs_dim: dict[str, tuple[int, ...]] = dict() for group_name, group_term_dims in self._group_obs_term_dim.items(): term_dims = [torch.tensor(dims, device="cpu") for dims in group_term_dims] self._group_obs_dim[group_name] = tuple(torch.sum(torch.stack(term_dims, dim=0), dim=0).tolist()) def __str__(self) -> str: """Returns: A string representation for the observation manager.""" msg = f"<ObservationManager> contains {len(self._group_obs_term_names)} groups.\n" # add info for each group for group_name, group_dim in self._group_obs_dim.items(): # create table for term information table = PrettyTable() table.title = f"Active Observation Terms in Group: '{group_name}' (shape: {group_dim})" table.field_names = ["Index", "Name", "Shape"] # set alignment of table columns table.align["Name"] = "l" # add info for each term obs_terms = zip( self._group_obs_term_names[group_name], self._group_obs_term_dim[group_name], ) for index, (name, dims) in enumerate(obs_terms): # resolve inputs to simplify prints tab_dims = tuple(dims) # add row table.add_row([index, name, tab_dims]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> dict[str, list[str]]: """Name of active observation terms in each group.""" return self._group_obs_term_names @property def group_obs_dim(self) -> dict[str, tuple[int, ...]]: """Shape of observation tensor in each group.""" return self._group_obs_dim @property def group_obs_term_dim(self) -> dict[str, list[tuple[int, ...]]]: """Shape of observation tensor for each term in each group.""" return self._group_obs_term_dim @property def group_obs_concatenate(self) -> dict[str, bool]: """Whether the observation terms are concatenated in each group.""" return self._group_obs_concatenate """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: # call all terms that are classes for group_cfg in self._group_obs_class_term_cfgs.values(): for term_cfg in group_cfg: term_cfg.func.reset(env_ids=env_ids) # nothing to log here return {} def compute(self) -> dict[str, torch.Tensor | dict[str, torch.Tensor]]: """Compute the observations per group for all groups. The method computes the observations for all the groups handled by the observation manager. Please check the :meth:`compute_group` on the processing of observations per group. Returns: A dictionary with keys as the group names and values as the computed observations. """ # create a buffer for storing obs from all the groups obs_buffer = dict() # iterate over all the terms in each group for group_name in self._group_obs_term_names: obs_buffer[group_name] = self.compute_group(group_name) # otherwise return a dict with observations of all groups return obs_buffer def compute_group(self, group_name: str) -> torch.Tensor | dict[str, torch.Tensor]: """Computes the observations for a given group. The observations for a given group are computed by calling the registered functions for each term in the group. The functions are called in the order of the terms in the group. The functions are expected to return a tensor with shape (num_envs, ...). If a corruption/noise model is registered for a term, the function is called to corrupt the observation. The corruption function is expected to return a tensor with the same shape as the observation. The observations are clipped and scaled as per the configuration settings. The operations are performed in the order: compute, add corruption/noise, clip, scale. By default, no scaling or clipping is applied. Args: group_name: The name of the group for which to compute the observations. Defaults to None, in which case observations for all the groups are computed and returned. Returns: Depending on the group's configuration, the tensors for individual observation terms are concatenated along the last dimension into a single tensor. Otherwise, they are returned as a dictionary with keys corresponding to the term's name. Raises: ValueError: If input ``group_name`` is not a valid group handled by the manager. """ # check ig group name is valid if group_name not in self._group_obs_term_names: raise ValueError( f"Unable to find the group '{group_name}' in the observation manager." f" Available groups are: {list(self._group_obs_term_names.keys())}" ) # iterate over all the terms in each group group_term_names = self._group_obs_term_names[group_name] # buffer to store obs per group group_obs = dict.fromkeys(group_term_names, None) # read attributes for each term obs_terms = zip(group_term_names, self._group_obs_term_cfgs[group_name]) # evaluate terms: compute, add noise, clip, scale. for name, term_cfg in obs_terms: # compute term's value obs: torch.Tensor = term_cfg.func(self._env, **term_cfg.params).clone() # apply post-processing if term_cfg.noise: obs = term_cfg.noise.func(obs, term_cfg.noise) if term_cfg.clip: obs = obs.clip_(min=term_cfg.clip[0], max=term_cfg.clip[1]) if term_cfg.scale: obs = obs.mul_(term_cfg.scale) # TODO: Introduce delay and filtering models. # Ref: https://robosuite.ai/docs/modules/sensors.html#observables # add value to list group_obs[name] = obs # concatenate all observations in the group together if self._group_obs_concatenate[group_name]: return torch.cat(list(group_obs.values()), dim=-1) else: return group_obs """ Helper functions. """ def _prepare_terms(self): """Prepares a list of observation terms functions.""" # create buffers to store information for each observation group # TODO: Make this more convenient by using data structures. self._group_obs_term_names: dict[str, list[str]] = dict() self._group_obs_term_dim: dict[str, list[int]] = dict() self._group_obs_term_cfgs: dict[str, list[ObservationTermCfg]] = dict() self._group_obs_class_term_cfgs: dict[str, list[ObservationTermCfg]] = dict() self._group_obs_concatenate: dict[str, bool] = dict() # check if config is dict already if isinstance(self.cfg, dict): group_cfg_items = self.cfg.items() else: group_cfg_items = self.cfg.__dict__.items() # iterate over all the groups for group_name, group_cfg in group_cfg_items: # check for non config if group_cfg is None: continue # check if the term is a curriculum term if not isinstance(group_cfg, ObservationGroupCfg): raise TypeError( f"Observation group '{group_name}' is not of type 'ObservationGroupCfg'." f" Received: '{type(group_cfg)}'." ) # initialize list for the group settings self._group_obs_term_names[group_name] = list() self._group_obs_term_dim[group_name] = list() self._group_obs_term_cfgs[group_name] = list() self._group_obs_class_term_cfgs[group_name] = list() # read common config for the group self._group_obs_concatenate[group_name] = group_cfg.concatenate_terms # check if config is dict already if isinstance(group_cfg, dict): group_cfg_items = group_cfg.items() else: group_cfg_items = group_cfg.__dict__.items() # iterate over all the terms in each group for term_name, term_cfg in group_cfg.__dict__.items(): # skip non-obs settings if term_name in ["enable_corruption", "concatenate_terms"]: continue # check for non config if term_cfg is None: continue if not isinstance(term_cfg, ObservationTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type ObservationTermCfg." f" Received: '{type(term_cfg)}'." ) # resolve common terms in the config self._resolve_common_term_cfg(f"{group_name}/{term_name}", term_cfg, min_argc=1) # check noise settings if not group_cfg.enable_corruption: term_cfg.noise = None # add term config to list to list self._group_obs_term_names[group_name].append(term_name) self._group_obs_term_cfgs[group_name].append(term_cfg) # call function the first time to fill up dimensions obs_dims = tuple(term_cfg.func(self._env, **term_cfg.params).shape[1:]) self._group_obs_term_dim[group_name].append(obs_dims) # add term in a separate list if term is a class if isinstance(term_cfg.func, ManagerTermBase): self._group_obs_class_term_cfgs[group_name].append(term_cfg) # call reset (in-case above call to get obs dims changed the state) term_cfg.func.reset()
11,820
Python
44.291188
114
0.609645
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/manager_base.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import copy import inspect from abc import ABC, abstractmethod from collections.abc import Sequence from typing import TYPE_CHECKING, Any import carb import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.utils import string_to_callable from .manager_term_cfg import ManagerTermBaseCfg from .scene_entity_cfg import SceneEntityCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv class ManagerTermBase(ABC): """Base class for manager terms. Manager term implementations can be functions or classes. If the term is a class, it should inherit from this base class and implement the required methods. Each manager is implemented as a class that inherits from the :class:`ManagerBase` class. Each manager class should also have a corresponding configuration class that defines the configuration terms for the manager. Each term should the :class:`ManagerTermBaseCfg` class or its subclass. Example pseudo-code for creating a manager: .. code-block:: python from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.mdp import ManagerBase, ManagerTermBaseCfg @configclass class MyManagerCfg: my_term_1: ManagerTermBaseCfg = ManagerTermBaseCfg(...) my_term_2: ManagerTermBaseCfg = ManagerTermBaseCfg(...) my_term_3: ManagerTermBaseCfg = ManagerTermBaseCfg(...) # define manager instance my_manager = ManagerBase(cfg=ManagerCfg(), env=env) """ def __init__(self, cfg: ManagerTermBaseCfg, env: BaseEnv): """Initialize the manager term. Args: cfg: The configuration object. env: The environment instance. """ # store the inputs self.cfg = cfg self._env = env """ Properties. """ @property def num_envs(self) -> int: """Number of environments.""" return self._env.num_envs @property def device(self) -> str: """Device on which to perform computations.""" return self._env.device """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> None: """Resets the manager term. Args: env_ids: The environment ids. Defaults to None, in which case all environments are considered. """ pass def __call__(self, *args) -> Any: """Returns the value of the term required by the manager. In case of a class implementation, this function is called by the manager to get the value of the term. The arguments passed to this function are the ones specified in the term configuration (see :attr:`ManagerTermBaseCfg.params`). .. attention:: To be consistent with memory-less implementation of terms with functions, it is recommended to ensure that the returned mutable quantities are cloned before returning them. For instance, if the term returns a tensor, it is recommended to ensure that the returned tensor is a clone of the original tensor. This prevents the manager from storing references to the tensors and altering the original tensors. Args: *args: Variable length argument list. Returns: The value of the term. """ raise NotImplementedError class ManagerBase(ABC): """Base class for all managers.""" def __init__(self, cfg: object, env: BaseEnv): """Initialize the manager. Args: cfg: The configuration object. env: The environment instance. """ # store the inputs self.cfg = copy.deepcopy(cfg) self._env = env # parse config to create terms information self._prepare_terms() """ Properties. """ @property def num_envs(self) -> int: """Number of environments.""" return self._env.num_envs @property def device(self) -> str: """Device on which to perform computations.""" return self._env.device @property @abstractmethod def active_terms(self) -> list[str] | dict[str, list[str]]: """Name of active terms.""" raise NotImplementedError """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: """Resets the manager and returns logging information for the current time-step. Args: env_ids: The environment ids for which to log data. Defaults None, which logs data for all environments. Returns: Dictionary containing the logging information. """ return {} def find_terms(self, name_keys: str | Sequence[str]) -> list[str]: """Find terms in the manager based on the names. This function searches the manager for terms based on the names. The names can be specified as regular expressions or a list of regular expressions. The search is performed on the active terms in the manager. Please check the :meth:`omni.isaac.orbit.utils.string_utils.resolve_matching_names` function for more information on the name matching. Args: name_keys: A regular expression or a list of regular expressions to match the term names. Returns: A list of term names that match the input keys. """ # resolve search keys if isinstance(self.active_terms, dict): list_of_strings = [] for names in self.active_terms.values(): list_of_strings.extend(names) else: list_of_strings = self.active_terms # return the matching names return string_utils.resolve_matching_names(name_keys, list_of_strings)[1] """ Implementation specific. """ @abstractmethod def _prepare_terms(self): """Prepare terms information from the configuration object.""" raise NotImplementedError """ Helper functions. """ def _resolve_common_term_cfg(self, term_name: str, term_cfg: ManagerTermBaseCfg, min_argc: int = 1): """Resolve common term configuration. Usually, called by the :meth:`_prepare_terms` method to resolve common term configuration. Note: By default, all term functions are expected to have at least one argument, which is the environment object. Some other managers may expect functions to take more arguments, for instance, the environment indices as the second argument. In such cases, the ``min_argc`` argument can be used to specify the minimum number of arguments required by the term function to be called correctly by the manager. Args: term_name: The name of the term. term_cfg: The term configuration. min_argc: The minimum number of arguments required by the term function to be called correctly by the manager. Raises: TypeError: If the term configuration is not of type :class:`ManagerTermBaseCfg`. ValueError: If the scene entity defined in the term configuration does not exist. AttributeError: If the term function is not callable. ValueError: If the term function's arguments are not matched by the parameters. """ # check if the term is a valid term config if not isinstance(term_cfg, ManagerTermBaseCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type ManagerTermBaseCfg." f" Received: '{type(term_cfg)}'." ) # iterate over all the entities and parse the joint and body names for key, value in term_cfg.params.items(): # deal with string if isinstance(value, SceneEntityCfg): # load the entity try: value.resolve(self._env.scene) except ValueError as e: raise ValueError(f"Error while parsing '{term_name}:{key}'. {e}") # log the entity for checking later msg = f"[{term_cfg.__class__.__name__}:{term_name}] Found entity '{value.name}'." if value.joint_ids is not None: msg += f"\n\tJoint names: {value.joint_names} [{value.joint_ids}]" if value.body_ids is not None: msg += f"\n\tBody names: {value.body_names} [{value.body_ids}]" # print the information carb.log_info(msg) # store the entity term_cfg.params[key] = value # get the corresponding function or functional class if isinstance(term_cfg.func, str): term_cfg.func = string_to_callable(term_cfg.func) # initialize the term if it is a class if inspect.isclass(term_cfg.func): if not issubclass(term_cfg.func, ManagerTermBase): raise TypeError( f"Configuration for the term '{term_name}' is not of type ManagerTermBase." f" Received: '{type(term_cfg.func)}'." ) term_cfg.func = term_cfg.func(cfg=term_cfg, env=self._env) # check if function is callable if not callable(term_cfg.func): raise AttributeError(f"The term '{term_name}' is not callable. Received: {term_cfg.func}") # check if term's arguments are matched by params term_params = list(term_cfg.params.keys()) args = inspect.signature(term_cfg.func).parameters args_with_defaults = [arg for arg in args if args[arg].default is not inspect.Parameter.empty] args_without_defaults = [arg for arg in args if args[arg].default is inspect.Parameter.empty] args = args_without_defaults + args_with_defaults # ignore first two arguments for env and env_ids # Think: Check for cases when kwargs are set inside the function? if len(args) > min_argc: if set(args[min_argc:]) != set(term_params + args_with_defaults): raise ValueError( f"The term '{term_name}' expects mandatory parameters: {args_without_defaults[min_argc:]}" f" and optional parameters: {args_with_defaults}, but received: {term_params}." )
10,629
Python
36.167832
110
0.621884
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for environment managers. The managers are used to handle various aspects of the environment such as randomization events, curriculum, and observations. Each manager implements a specific functionality for the environment. The managers are designed to be modular and can be easily extended to support new functionality. """ from .action_manager import ActionManager, ActionTerm from .command_manager import CommandManager, CommandTerm from .curriculum_manager import CurriculumManager from .event_manager import EventManager, RandomizationManager from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import ( ActionTermCfg, CommandTermCfg, CurriculumTermCfg, EventTermCfg, ManagerTermBaseCfg, ObservationGroupCfg, ObservationTermCfg, RandomizationTermCfg, RewardTermCfg, TerminationTermCfg, ) from .observation_manager import ObservationManager from .reward_manager import RewardManager from .scene_entity_cfg import SceneEntityCfg from .termination_manager import TerminationManager
1,188
Python
33.970587
108
0.808081
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/event_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Event manager for orchestrating operations based on different simulation events.""" from __future__ import annotations import torch import warnings from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING import carb from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import EventTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv class EventManager(ManagerBase): """Manager for orchestrating operations based on different simulation events. The event manager applies operations to the environment based on different simulation events. For example, changing the masses of objects or their friction coefficients during initialization/ reset, or applying random pushes to the robot at a fixed interval of steps. The user can specify several modes of events to fine-tune the behavior based on when to apply the event. The event terms are parsed from a config class containing the manager's settings and each term's parameters. Each event term should instantiate the :class:`EventTermCfg` class. Event terms can be grouped by their mode. The mode is a user-defined string that specifies when the event term should be applied. This provides the user complete control over when event terms should be applied. For a typical training process, you may want to apply events in the following modes: - "startup": Event is applied once at the beginning of the training. - "reset": Event is applied at every reset. - "interval": Event is applied at pre-specified intervals of time. However, you can also define your own modes and use them in the training process as you see fit. For this you will need to add the triggering of that mode in the environment implementation as well. .. note:: The triggering of operations corresponding to the mode ``"interval"`` are the only mode that are directly handled by the manager itself. The other modes are handled by the environment implementation. """ _env: RLTaskEnv """The environment instance.""" def __init__(self, cfg: object, env: RLTaskEnv): """Initialize the event manager. Args: cfg: A configuration object or dictionary (``dict[str, EventTermCfg]``). env: An environment object. """ super().__init__(cfg, env) def __str__(self) -> str: """Returns: A string representation for event manager.""" msg = f"<EventManager> contains {len(self._mode_term_names)} active terms.\n" # add info on each mode for mode in self._mode_term_names: # create table for term information table = PrettyTable() table.title = f"Active Event Terms in Mode: '{mode}'" # add table headers based on mode if mode == "interval": table.field_names = ["Index", "Name", "Interval time range (s)"] table.align["Name"] = "l" for index, (name, cfg) in enumerate(zip(self._mode_term_names[mode], self._mode_term_cfgs[mode])): table.add_row([index, name, cfg.interval_range_s]) else: table.field_names = ["Index", "Name"] table.align["Name"] = "l" for index, name in enumerate(self._mode_term_names[mode]): table.add_row([index, name]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> dict[str, list[str]]: """Name of active event terms. The keys are the modes of event and the values are the names of the event terms. """ return self._mode_term_names @property def available_modes(self) -> list[str]: """Modes of events.""" return list(self._mode_term_names.keys()) """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: # call all terms that are classes for mode_cfg in self._mode_class_term_cfgs.values(): for term_cfg in mode_cfg: term_cfg.func.reset(env_ids=env_ids) # nothing to log here return {} def apply(self, mode: str, env_ids: Sequence[int] | None = None, dt: float | None = None): """Calls each event term in the specified mode. Note: For interval mode, the time step of the environment is used to determine if the event should be applied. Args: mode: The mode of event. env_ids: The indices of the environments to apply the event to. Defaults to None, in which case the event is applied to all environments. dt: The time step of the environment. This is only used for the "interval" mode. Defaults to None to simplify the call for other modes. Raises: ValueError: If the mode is ``"interval"`` and the time step is not provided. """ # check if mode is valid if mode not in self._mode_term_names: carb.log_warn(f"Event mode '{mode}' is not defined. Skipping event.") return # iterate over all the event terms for index, term_cfg in enumerate(self._mode_term_cfgs[mode]): # resample interval if needed if mode == "interval": if dt is None: raise ValueError( f"Event mode '{mode}' requires the time step of the environment" " to be passed to the event manager." ) # extract time left for this term time_left = self._interval_mode_time_left[index] # update the time left for each environment time_left -= dt # check if the interval has passed env_ids = (time_left <= 0.0).nonzero().flatten() if len(env_ids) > 0: lower, upper = term_cfg.interval_range_s time_left[env_ids] = torch.rand(len(env_ids), device=self.device) * (upper - lower) + lower # call the event term term_cfg.func(self._env, env_ids, **term_cfg.params) """ Operations - Term settings. """ def set_term_cfg(self, term_name: str, cfg: EventTermCfg): """Sets the configuration of the specified term into the manager. The method finds the term by name by searching through all the modes. It then updates the configuration of the term with the first matching name. Args: term_name: The name of the event term. cfg: The configuration for the event term. Raises: ValueError: If the term name is not found. """ term_found = False for mode, terms in self._mode_term_names.items(): if term_name in terms: self._mode_term_cfgs[mode][terms.index(term_name)] = cfg term_found = True break if not term_found: raise ValueError(f"Event term '{term_name}' not found.") def get_term_cfg(self, term_name: str) -> EventTermCfg: """Gets the configuration for the specified term. The method finds the term by name by searching through all the modes. It then returns the configuration of the term with the first matching name. Args: term_name: The name of the event term. Returns: The configuration of the event term. Raises: ValueError: If the term name is not found. """ for mode, terms in self._mode_term_names.items(): if term_name in terms: return self._mode_term_cfgs[mode][terms.index(term_name)] raise ValueError(f"Event term '{term_name}' not found.") """ Helper functions. """ def _prepare_terms(self): """Prepares a list of event functions.""" # parse remaining event terms and decimate their information self._mode_term_names: dict[str, list[str]] = dict() self._mode_term_cfgs: dict[str, list[EventTermCfg]] = dict() self._mode_class_term_cfgs: dict[str, list[EventTermCfg]] = dict() # buffer to store the time left for each environment for "interval" mode self._interval_mode_time_left: list[torch.Tensor] = list() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() # iterate over all the terms for term_name, term_cfg in cfg_items: # check for non config if term_cfg is None: continue # check for valid config type if not isinstance(term_cfg, EventTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type EventTermCfg." f" Received: '{type(term_cfg)}'." ) # resolve common parameters self._resolve_common_term_cfg(term_name, term_cfg, min_argc=2) # check if mode is a new mode if term_cfg.mode not in self._mode_term_names: # add new mode self._mode_term_names[term_cfg.mode] = list() self._mode_term_cfgs[term_cfg.mode] = list() self._mode_class_term_cfgs[term_cfg.mode] = list() # add term name and parameters self._mode_term_names[term_cfg.mode].append(term_name) self._mode_term_cfgs[term_cfg.mode].append(term_cfg) # check if the term is a class if isinstance(term_cfg.func, ManagerTermBase): self._mode_class_term_cfgs[term_cfg.mode].append(term_cfg) # resolve the mode of the events if term_cfg.mode == "interval": if term_cfg.interval_range_s is None: raise ValueError( f"Event term '{term_name}' has mode 'interval' but 'interval_range_s' is not specified." ) # sample the time left for each environment lower, upper = term_cfg.interval_range_s time_left = torch.rand(self.num_envs, device=self.device) * (upper - lower) + lower self._interval_mode_time_left.append(time_left) class RandomizationManager(EventManager): """Manager for applying event specific operations to different elements in the scene. .. deprecated:: v0.4.0 As the RandomizationManager also handles events such as resetting the environment, the class has been renamed to EventManager as it is more general purpose. The RandomizationManager will be removed in v0.4.0. """ def __init__(self, cfg: object, env: RLTaskEnv): """Initialize the randomization manager. Args: cfg: A configuration object or dictionary (``dict[str, EventTermCfg]``). env: An environment object. """ dep_msg = "The class 'RandomizationManager' will be removed in v0.4.0. Please use 'EventManager' instead." warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) super().__init__(cfg, env) def randomize(self, mode: str, env_ids: Sequence[int] | None = None, dt: float | None = None): """Randomize the environment. .. deprecated:: v0.4.0 This method will be removed in v0.4.0. Please use the method :meth:`EventManager.apply` instead. """ dep_msg = ( "The class 'RandomizationManager' including its method 'randomize' will be removed in v0.4.0. Please use " "the class 'EventManager' with the method 'apply' instead." ) warnings.warn(dep_msg, DeprecationWarning) carb.log_error(dep_msg) self.apply(mode, env_ids, dt)
12,265
Python
39.481848
118
0.603261
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/command_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Command manager for generating and updating commands.""" from __future__ import annotations import inspect import torch import weakref from abc import abstractmethod from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING import omni.kit.app from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import CommandTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv class CommandTerm(ManagerTermBase): """The base class for implementing a command term. A command term is used to generate commands for goal-conditioned tasks. For example, in the case of a goal-conditioned navigation task, the command term can be used to generate a target position for the robot to navigate to. It implements a resampling mechanism that allows the command to be resampled at a fixed frequency. The resampling frequency can be specified in the configuration object. Additionally, it is possible to assign a visualization function to the command term that can be used to visualize the command in the simulator. """ def __init__(self, cfg: CommandTermCfg, env: RLTaskEnv): """Initialize the command generator class. Args: cfg: The configuration parameters for the command generator. env: The environment object. """ super().__init__(cfg, env) # create buffers to store the command # -- metrics that can be used for logging self.metrics = dict() # -- time left before resampling self.time_left = torch.zeros(self.num_envs, device=self.device) # -- counter for the number of times the command has been resampled within the current episode self.command_counter = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # add handle for debug visualization (this is set to a valid handle inside set_debug_vis) self._debug_vis_handle = None # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) def __del__(self): """Unsubscribe from the callbacks.""" if self._debug_vis_handle: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None """ Properties """ @property @abstractmethod def command(self) -> torch.Tensor: """The command tensor. Shape is (num_envs, command_dim).""" raise NotImplementedError @property def has_debug_vis_implementation(self) -> bool: """Whether the command generator has a debug visualization implemented.""" # check if function raises NotImplementedError source_code = inspect.getsource(self._set_debug_vis_impl) return "NotImplementedError" not in source_code """ Operations. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Sets whether to visualize the command data. Args: debug_vis: Whether to visualize the command data. Returns: Whether the debug visualization was successfully set. False if the command generator does not support debug visualization. """ # check if debug visualization is supported if not self.has_debug_vis_implementation: return False # toggle debug visualization objects self._set_debug_vis_impl(debug_vis) # toggle debug visualization handles if debug_vis: # create a subscriber for the post update event if it doesn't exist if self._debug_vis_handle is None: app_interface = omni.kit.app.get_app_interface() self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event) ) else: # remove the subscriber if it exists if self._debug_vis_handle is not None: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None # return success return True def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: """Reset the command generator and log metrics. This function resets the command counter and resamples the command. It should be called at the beginning of each episode. Args: env_ids: The list of environment IDs to reset. Defaults to None. Returns: A dictionary containing the information to log under the "{name}" key. """ # resolve the environment IDs if env_ids is None: env_ids = slice(None) # set the command counter to zero self.command_counter[env_ids] = 0 # resample the command self._resample(env_ids) # add logging metrics extras = {} for metric_name, metric_value in self.metrics.items(): # compute the mean metric value extras[metric_name] = torch.mean(metric_value[env_ids]).item() # reset the metric value metric_value[env_ids] = 0.0 return extras def compute(self, dt: float): """Compute the command. Args: dt: The time step passed since the last call to compute. """ # update the metrics based on current state self._update_metrics() # reduce the time left before resampling self.time_left -= dt # resample the command if necessary resample_env_ids = (self.time_left <= 0.0).nonzero().flatten() if len(resample_env_ids) > 0: self._resample(resample_env_ids) # update the command self._update_command() """ Helper functions. """ def _resample(self, env_ids: Sequence[int]): """Resample the command. This function resamples the command and time for which the command is applied for the specified environment indices. Args: env_ids: The list of environment IDs to resample. """ # resample the time left before resampling self.time_left[env_ids] = self.time_left[env_ids].uniform_(*self.cfg.resampling_time_range) # increment the command counter self.command_counter[env_ids] += 1 # resample the command self._resample_command(env_ids) """ Implementation specific functions. """ @abstractmethod def _update_metrics(self): """Update the metrics based on the current state.""" raise NotImplementedError @abstractmethod def _resample_command(self, env_ids: Sequence[int]): """Resample the command for the specified environments.""" raise NotImplementedError @abstractmethod def _update_command(self): """Update the command based on the current state.""" raise NotImplementedError def _set_debug_vis_impl(self, debug_vis: bool): """Set debug visualization into visualization objects. This function is responsible for creating the visualization objects if they don't exist and input ``debug_vis`` is True. If the visualization objects exist, the function should set their visibility into the stage. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") def _debug_vis_callback(self, event): """Callback for debug visualization. This function calls the visualization objects and sets the data to visualize into them. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") class CommandManager(ManagerBase): """Manager for generating commands. The command manager is used to generate commands for an agent to execute. It makes it convenient to switch between different command generation strategies within the same environment. For instance, in an environment consisting of a quadrupedal robot, the command to it could be a velocity command or position command. By keeping the command generation logic separate from the environment, it is easy to switch between different command generation strategies. The command terms are implemented as classes that inherit from the :class:`CommandTerm` class. Each command generator term should also have a corresponding configuration class that inherits from the :class:`CommandTermCfg` class. """ _env: RLTaskEnv """The environment instance.""" def __init__(self, cfg: object, env: RLTaskEnv): """Initialize the command manager. Args: cfg: The configuration object or dictionary (``dict[str, CommandTermCfg]``). env: The environment instance. """ super().__init__(cfg, env) # store the commands self._commands = dict() self.cfg.debug_vis = False for term in self._terms.values(): self.cfg.debug_vis |= term.cfg.debug_vis def __str__(self) -> str: """Returns: A string representation for the command manager.""" msg = f"<CommandManager> contains {len(self._terms.values())} active terms.\n" # create table for term information table = PrettyTable() table.title = "Active Command Terms" table.field_names = ["Index", "Name", "Type"] # set alignment of table columns table.align["Name"] = "l" # add info on each term for index, (name, term) in enumerate(self._terms.items()): table.add_row([index, name, term.__class__.__name__]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> list[str]: """Name of active command terms.""" return list(self._terms.keys()) @property def has_debug_vis_implementation(self) -> bool: """Whether the command terms have debug visualization implemented.""" # check if function raises NotImplementedError has_debug_vis = False for term in self._terms.values(): has_debug_vis |= term.has_debug_vis_implementation return has_debug_vis """ Operations. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Sets whether to visualize the command data. Args: debug_vis: Whether to visualize the command data. Returns: Whether the debug visualization was successfully set. False if the command generator does not support debug visualization. """ for term in self._terms.values(): term.set_debug_vis(debug_vis) def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, torch.Tensor]: """Reset the command terms and log their metrics. This function resets the command counter and resamples the command for each term. It should be called at the beginning of each episode. Args: env_ids: The list of environment IDs to reset. Defaults to None. Returns: A dictionary containing the information to log under the "Metrics/{term_name}/{metric_name}" key. """ # resolve environment ids if env_ids is None: env_ids = slice(None) # store information extras = {} for name, term in self._terms.items(): # reset the command term metrics = term.reset(env_ids=env_ids) # compute the mean metric value for metric_name, metric_value in metrics.items(): extras[f"Metrics/{name}/{metric_name}"] = metric_value # return logged information return extras def compute(self, dt: float): """Updates the commands. This function calls each command term managed by the class. Args: dt: The time-step interval of the environment. """ # iterate over all the command terms for term in self._terms.values(): # compute term's value term.compute(dt) def get_command(self, name: str) -> torch.Tensor: """Returns the command for the specified command term. Args: name: The name of the command term. Returns: The command tensor of the specified command term. """ return self._terms[name].command def get_term(self, name: str) -> CommandTerm: """Returns the command term with the specified name. Args: name: The name of the command term. Returns: The command term with the specified name. """ return self._terms[name] """ Helper functions. """ def _prepare_terms(self): """Prepares a list of command terms.""" # parse command terms from the config self._terms: dict[str, CommandTerm] = dict() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() # iterate over all the terms for term_name, term_cfg in cfg_items: # check for non config if term_cfg is None: continue # check for valid config type if not isinstance(term_cfg, CommandTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type CommandTermCfg." f" Received: '{type(term_cfg)}'." ) # create the action term term = term_cfg.class_type(term_cfg, self._env) # add class to dict self._terms[term_name] = term
14,055
Python
34.405541
113
0.623764
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/scene_entity_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration terms for different managers.""" from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.scene import InteractiveScene from omni.isaac.orbit.utils import configclass @configclass class SceneEntityCfg: """Configuration for a scene entity that is used by the manager's term. This class is used to specify the name of the scene entity that is queried from the :class:`InteractiveScene` and passed to the manager's term function. """ name: str = MISSING """The name of the scene entity. This is the name defined in the scene configuration file. See the :class:`InteractiveSceneCfg` class for more details. """ joint_names: str | list[str] | None = None """The names of the joints from the scene entity. Defaults to None. The names can be either joint names or a regular expression matching the joint names. These are converted to joint indices on initialization of the manager and passed to the term function as a list of joint indices under :attr:`joint_ids`. """ joint_ids: list[int] | slice = slice(None) """The indices of the joints from the asset required by the term. Defaults to slice(None), which means all the joints in the asset (if present). If :attr:`joint_names` is specified, this is filled in automatically on initialization of the manager. """ body_names: str | list[str] | None = None """The names of the bodies from the asset required by the term. Defaults to None. The names can be either body names or a regular expression matching the body names. These are converted to body indices on initialization of the manager and passed to the term function as a list of body indices under :attr:`body_ids`. """ body_ids: list[int] | slice = slice(None) """The indices of the bodies from the asset required by the term. Defaults to slice(None), which means all the bodies in the asset. If :attr:`body_names` is specified, this is filled in automatically on initialization of the manager. """ preserve_order: bool = False """Whether to preserve indices ordering to match with that in the specified joint or body names. Defaults to False. If False, the ordering of the indices are sorted in ascending order (i.e. the ordering in the entity's joints or bodies). Otherwise, the indices are preserved in the order of the specified joint and body names. For more details, see the :meth:`omni.isaac.orbit.utils.string.resolve_matching_names` function. .. note:: This attribute is only used when :attr:`joint_names` or :attr:`body_names` are specified. """ def resolve(self, scene: InteractiveScene): """Resolves the scene entity and converts the joint and body names to indices. This function examines the scene entity from the :class:`InteractiveScene` and resolves the indices and names of the joints and bodies. It is an expensive operation as it resolves regular expressions and should be called only once. Args: scene: The interactive scene instance. Raises: ValueError: If the scene entity is not found. ValueError: If both ``joint_names`` and ``joint_ids`` are specified and are not consistent. ValueError: If both ``body_names`` and ``body_ids`` are specified and are not consistent. """ # check if the entity is valid if self.name not in scene.keys(): raise ValueError(f"The scene entity '{self.name}' does not exist. Available entities: {scene.keys()}.") # convert joint names to indices based on regex if self.joint_names is not None or self.joint_ids != slice(None): entity: Articulation = scene[self.name] # -- if both are not their default values, check if they are valid if self.joint_names is not None and self.joint_ids != slice(None): if isinstance(self.joint_names, str): self.joint_names = [self.joint_names] if isinstance(self.joint_ids, int): self.joint_ids = [self.joint_ids] joint_ids, _ = entity.find_joints(self.joint_names, preserve_order=self.preserve_order) joint_names = [entity.joint_names[i] for i in self.joint_ids] if joint_ids != self.joint_ids or joint_names != self.joint_names: raise ValueError( "Both 'joint_names' and 'joint_ids' are specified, and are not consistent." f"\n\tfrom joint names: {self.joint_names} [{joint_ids}]" f"\n\tfrom joint ids: {joint_names} [{self.joint_ids}]" "\nHint: Use either 'joint_names' or 'joint_ids' to avoid confusion." ) # -- from joint names to joint indices elif self.joint_names is not None: if isinstance(self.joint_names, str): self.joint_names = [self.joint_names] self.joint_ids, _ = entity.find_joints(self.joint_names, preserve_order=self.preserve_order) # performance optimization (slice offers faster indexing than list of indices) # only all joint in the entity order are selected if len(self.joint_ids) == entity.num_joints and self.joint_names == entity.joint_names: self.joint_ids = slice(None) # -- from joint indices to joint names elif self.joint_ids != slice(None): if isinstance(self.joint_ids, int): self.joint_ids = [self.joint_ids] self.joint_names = [entity.joint_names[i] for i in self.joint_ids] # convert body names to indices based on regex if self.body_names is not None or self.body_ids != slice(None): entity: RigidObject = scene[self.name] # -- if both are not their default values, check if they are valid if self.body_names is not None and self.body_ids != slice(None): if isinstance(self.body_names, str): self.body_names = [self.body_names] if isinstance(self.body_ids, int): self.body_ids = [self.body_ids] body_ids, _ = entity.find_bodies(self.body_names, preserve_order=self.preserve_order) body_names = [entity.body_names[i] for i in self.body_ids] if body_ids != self.body_ids or body_names != self.body_names: raise ValueError( "Both 'body_names' and 'body_ids' are specified, and are not consistent." f"\n\tfrom body names: {self.body_names} [{body_ids}]" f"\n\tfrom body ids: {body_names} [{self.body_ids}]" "\nHint: Use either 'body_names' or 'body_ids' to avoid confusion." ) # -- from body names to body indices elif self.body_names is not None: if isinstance(self.body_names, str): self.body_names = [self.body_names] self.body_ids, _ = entity.find_bodies(self.body_names, preserve_order=self.preserve_order) # performance optimization (slice offers faster indexing than list of indices) # only all bodies in the entity order are selected if len(self.body_ids) == entity.num_bodies and self.body_names == entity.body_names: self.body_ids = slice(None) # -- from body indices to body names elif self.body_ids != slice(None): if isinstance(self.body_ids, int): self.body_ids = [self.body_ids] self.body_names = [entity.body_names[i] for i in self.body_ids]
8,102
Python
48.711656
119
0.62429
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/curriculum_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Curriculum manager for updating environment quantities subject to a training curriculum.""" from __future__ import annotations import torch from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import CurriculumTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv class CurriculumManager(ManagerBase): """Manager to implement and execute specific curricula. The curriculum manager updates various quantities of the environment subject to a training curriculum by calling a list of terms. These help stabilize learning by progressively making the learning tasks harder as the agent improves. The curriculum terms are parsed from a config class containing the manager's settings and each term's parameters. Each curriculum term should instantiate the :class:`CurriculumTermCfg` class. """ _env: RLTaskEnv """The environment instance.""" def __init__(self, cfg: object, env: RLTaskEnv): """Initialize the manager. Args: cfg: The configuration object or dictionary (``dict[str, CurriculumTermCfg]``) env: An environment object. Raises: TypeError: If curriculum term is not of type :class:`CurriculumTermCfg`. ValueError: If curriculum term configuration does not satisfy its function signature. """ super().__init__(cfg, env) # prepare logging self._curriculum_state = dict() for term_name in self._term_names: self._curriculum_state[term_name] = None def __str__(self) -> str: """Returns: A string representation for curriculum manager.""" msg = f"<CurriculumManager> contains {len(self._term_names)} active terms.\n" # create table for term information table = PrettyTable() table.title = "Active Curriculum Terms" table.field_names = ["Index", "Name"] # set alignment of table columns table.align["Name"] = "l" # add info on each term for index, name in enumerate(self._term_names): table.add_row([index, name]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> list[str]: """Name of active curriculum terms.""" return self._term_names """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]: """Returns the current state of individual curriculum terms. Note: This function does not use the environment indices :attr:`env_ids` and logs the state of all the terms. The argument is only present to maintain consistency with other classes. Returns: Dictionary of curriculum terms and their states. """ extras = {} for term_name, term_state in self._curriculum_state.items(): if term_state is not None: # deal with dict if isinstance(term_state, dict): # each key is a separate state to log for key, value in term_state.items(): if isinstance(value, torch.Tensor): value = value.item() extras[f"Curriculum/{term_name}/{key}"] = value else: # log directly if not a dict if isinstance(term_state, torch.Tensor): term_state = term_state.item() extras[f"Curriculum/{term_name}"] = term_state # reset all the curriculum terms for term_cfg in self._class_term_cfgs: term_cfg.func.reset(env_ids=env_ids) # return logged information return extras def compute(self, env_ids: Sequence[int] | None = None): """Update the curriculum terms. This function calls each curriculum term managed by the class. Args: env_ids: The list of environment IDs to update. If None, all the environments are updated. Defaults to None. """ # resolve environment indices if env_ids is None: env_ids = slice(None) # iterate over all the curriculum terms for name, term_cfg in zip(self._term_names, self._term_cfgs): state = term_cfg.func(self._env, env_ids, **term_cfg.params) self._curriculum_state[name] = state """ Helper functions. """ def _prepare_terms(self): # parse remaining curriculum terms and decimate their information self._term_names: list[str] = list() self._term_cfgs: list[CurriculumTermCfg] = list() self._class_term_cfgs: list[CurriculumTermCfg] = list() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() # iterate over all the terms for term_name, term_cfg in cfg_items: # check for non config if term_cfg is None: continue # check if the term is a valid term config if not isinstance(term_cfg, CurriculumTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type CurriculumTermCfg." f" Received: '{type(term_cfg)}'." ) # resolve common parameters self._resolve_common_term_cfg(term_name, term_cfg, min_argc=2) # add name and config to list self._term_names.append(term_name) self._term_cfgs.append(term_cfg) # check if the term is a class if isinstance(term_cfg.func, ManagerTermBase): self._class_term_cfgs.append(term_cfg)
6,171
Python
35.738095
108
0.602009
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/manager_term_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration terms for different managers.""" from __future__ import annotations import torch import warnings from collections.abc import Callable from dataclasses import MISSING from typing import TYPE_CHECKING, Any from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.noise import NoiseCfg from .scene_entity_cfg import SceneEntityCfg if TYPE_CHECKING: from .action_manager import ActionTerm from .command_manager import CommandTerm from .manager_base import ManagerTermBase @configclass class ManagerTermBaseCfg: """Configuration for a manager term.""" func: Callable | ManagerTermBase = MISSING """The function or class to be called for the term. The function must take the environment object as the first argument. The remaining arguments are specified in the :attr:`params` attribute. It also supports `callable classes`_, i.e. classes that implement the :meth:`__call__` method. In this case, the class should inherit from the :class:`ManagerTermBase` class and implement the required methods. .. _`callable classes`: https://docs.python.org/3/reference/datamodel.html#object.__call__ """ params: dict[str, Any | SceneEntityCfg] = dict() """The parameters to be passed to the function as keyword arguments. Defaults to an empty dict. .. note:: If the value is a :class:`SceneEntityCfg` object, the manager will query the scene entity from the :class:`InteractiveScene` and process the entity's joints and bodies as specified in the :class:`SceneEntityCfg` object. """ ## # Action manager. ## @configclass class ActionTermCfg: """Configuration for an action term.""" class_type: type[ActionTerm] = MISSING """The associated action term class. The class should inherit from :class:`omni.isaac.orbit.managers.action_manager.ActionTerm`. """ asset_name: str = MISSING """The name of the scene entity. This is the name defined in the scene configuration file. See the :class:`InteractiveSceneCfg` class for more details. """ ## # Command manager. ## @configclass class CommandTermCfg: """Configuration for a command generator term.""" class_type: type[CommandTerm] = MISSING """The associated command term class to use. The class should inherit from :class:`omni.isaac.orbit.managers.command_manager.CommandTerm`. """ resampling_time_range: tuple[float, float] = MISSING """Time before commands are changed [s].""" debug_vis: bool = False """Whether to visualize debug information. Defaults to False.""" ## # Curriculum manager. ## @configclass class CurriculumTermCfg(ManagerTermBaseCfg): """Configuration for a curriculum term.""" func: Callable[..., float | dict[str, float] | None] = MISSING """The name of the function to be called. This function should take the environment object, environment indices and any other parameters as input and return the curriculum state for logging purposes. If the function returns None, the curriculum state is not logged. """ ## # Observation manager. ## @configclass class ObservationTermCfg(ManagerTermBaseCfg): """Configuration for an observation term.""" func: Callable[..., torch.Tensor] = MISSING """The name of the function to be called. This function should take the environment object and any other parameters as input and return the observation signal as torch float tensors of shape (num_envs, obs_term_dim). """ noise: NoiseCfg | None = None """The noise to add to the observation. Defaults to None, in which case no noise is added.""" clip: tuple[float, float] | None = None """The clipping range for the observation after adding noise. Defaults to None, in which case no clipping is applied.""" scale: float | None = None """The scale to apply to the observation after clipping. Defaults to None, in which case no scaling is applied (same as setting scale to :obj:`1`).""" @configclass class ObservationGroupCfg: """Configuration for an observation group.""" concatenate_terms: bool = True """Whether to concatenate the observation terms in the group. Defaults to True. If true, the observation terms in the group are concatenated along the last dimension. Otherwise, they are kept separate and returned as a dictionary. """ enable_corruption: bool = False """Whether to enable corruption for the observation group. Defaults to False. If true, the observation terms in the group are corrupted by adding noise (if specified). Otherwise, no corruption is applied. """ ## # Event manager ## @configclass class EventTermCfg(ManagerTermBaseCfg): """Configuration for a event term.""" func: Callable[..., None] = MISSING """The name of the function to be called. This function should take the environment object, environment indices and any other parameters as input. """ mode: str = MISSING """The mode in which the event term is applied. Note: The mode name ``"interval"`` is a special mode that is handled by the manager Hence, its name is reserved and cannot be used for other modes. """ interval_range_s: tuple[float, float] | None = None """The range of time in seconds at which the term is applied. Based on this, the interval is sampled uniformly between the specified range for each environment instance. The term is applied on the environment instances where the current time hits the interval time. Note: This is only used if the mode is ``"interval"``. """ @configclass class RandomizationTermCfg(EventTermCfg): """Configuration for a randomization term. .. deprecated:: v0.3.0 This class is deprecated and will be removed in v0.4.0. Please use :class:`EventTermCfg` instead. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Deprecation warning. warnings.warn( "The RandomizationTermCfg has been renamed to EventTermCfg and will be removed in v0.4.0. Please use" " EventTermCfg instead.", DeprecationWarning, ) ## # Reward manager. ## @configclass class RewardTermCfg(ManagerTermBaseCfg): """Configuration for a reward term.""" func: Callable[..., torch.Tensor] = MISSING """The name of the function to be called. This function should take the environment object and any other parameters as input and return the reward signals as torch float tensors of shape (num_envs,). """ weight: float = MISSING """The weight of the reward term. This is multiplied with the reward term's value to compute the final reward. Note: If the weight is zero, the reward term is ignored. """ ## # Termination manager. ## @configclass class TerminationTermCfg(ManagerTermBaseCfg): """Configuration for a termination term.""" func: Callable[..., torch.Tensor] = MISSING """The name of the function to be called. This function should take the environment object and any other parameters as input and return the termination signals as torch boolean tensors of shape (num_envs,). """ time_out: bool = False """Whether the termination term contributes towards episodic timeouts. Defaults to False. Note: These usually correspond to tasks that have a fixed time limit. """
7,667
Python
27.295203
113
0.696361
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/reward_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Reward manager for computing reward signals for a given world.""" from __future__ import annotations import torch from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import RewardTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv class RewardManager(ManagerBase): """Manager for computing reward signals for a given world. The reward manager computes the total reward as a sum of the weighted reward terms. The reward terms are parsed from a nested config class containing the reward manger's settings and reward terms configuration. The reward terms are parsed from a config class containing the manager's settings and each term's parameters. Each reward term should instantiate the :class:`RewardTermCfg` class. .. note:: The reward manager multiplies the reward term's ``weight`` with the time-step interval ``dt`` of the environment. This is done to ensure that the computed reward terms are balanced with respect to the chosen time-step interval in the environment. """ _env: RLTaskEnv """The environment instance.""" def __init__(self, cfg: object, env: RLTaskEnv): """Initialize the reward manager. Args: cfg: The configuration object or dictionary (``dict[str, RewardTermCfg]``). env: The environment instance. """ super().__init__(cfg, env) # prepare extra info to store individual reward term information self._episode_sums = dict() for term_name in self._term_names: self._episode_sums[term_name] = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) # create buffer for managing reward per environment self._reward_buf = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) def __str__(self) -> str: """Returns: A string representation for reward manager.""" msg = f"<RewardManager> contains {len(self._term_names)} active terms.\n" # create table for term information table = PrettyTable() table.title = "Active Reward Terms" table.field_names = ["Index", "Name", "Weight"] # set alignment of table columns table.align["Name"] = "l" table.align["Weight"] = "r" # add info on each term for index, (name, term_cfg) in enumerate(zip(self._term_names, self._term_cfgs)): table.add_row([index, name, term_cfg.weight]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> list[str]: """Name of active reward terms.""" return self._term_names """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, torch.Tensor]: """Returns the episodic sum of individual reward terms. Args: env_ids: The environment ids for which the episodic sum of individual reward terms is to be returned. Defaults to all the environment ids. Returns: Dictionary of episodic sum of individual reward terms. """ # resolve environment ids if env_ids is None: env_ids = slice(None) # store information extras = {} for key in self._episode_sums.keys(): # store information # r_1 + r_2 + ... + r_n episodic_sum_avg = torch.mean(self._episode_sums[key][env_ids]) extras["Episode Reward/" + key] = episodic_sum_avg / self._env.max_episode_length_s # reset episodic sum self._episode_sums[key][env_ids] = 0.0 # reset all the reward terms for term_cfg in self._class_term_cfgs: term_cfg.func.reset(env_ids=env_ids) # return logged information return extras def compute(self, dt: float) -> torch.Tensor: """Computes the reward signal as a weighted sum of individual terms. This function calls each reward term managed by the class and adds them to compute the net reward signal. It also updates the episodic sums corresponding to individual reward terms. Args: dt: The time-step interval of the environment. Returns: The net reward signal of shape (num_envs,). """ # reset computation self._reward_buf[:] = 0.0 # iterate over all the reward terms for name, term_cfg in zip(self._term_names, self._term_cfgs): # skip if weight is zero (kind of a micro-optimization) if term_cfg.weight == 0.0: continue # compute term's value value = term_cfg.func(self._env, **term_cfg.params) * term_cfg.weight * dt # update total reward self._reward_buf += value # update episodic sum self._episode_sums[name] += value return self._reward_buf """ Operations - Term settings. """ def set_term_cfg(self, term_name: str, cfg: RewardTermCfg): """Sets the configuration of the specified term into the manager. Args: term_name: The name of the reward term. cfg: The configuration for the reward term. Raises: ValueError: If the term name is not found. """ if term_name not in self._term_names: raise ValueError(f"Reward term '{term_name}' not found.") # set the configuration self._term_cfgs[self._term_names.index(term_name)] = cfg def get_term_cfg(self, term_name: str) -> RewardTermCfg: """Gets the configuration for the specified term. Args: term_name: The name of the reward term. Returns: The configuration of the reward term. Raises: ValueError: If the term name is not found. """ if term_name not in self._term_names: raise ValueError(f"Reward term '{term_name}' not found.") # return the configuration return self._term_cfgs[self._term_names.index(term_name)] """ Helper functions. """ def _prepare_terms(self): """Prepares a list of reward functions.""" # parse remaining reward terms and decimate their information self._term_names: list[str] = list() self._term_cfgs: list[RewardTermCfg] = list() self._class_term_cfgs: list[RewardTermCfg] = list() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() # iterate over all the terms for term_name, term_cfg in cfg_items: # check for non config if term_cfg is None: continue # check for valid config type if not isinstance(term_cfg, RewardTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type RewardTermCfg." f" Received: '{type(term_cfg)}'." ) # check for valid weight type if not isinstance(term_cfg.weight, (float, int)): raise TypeError( f"Weight for the term '{term_name}' is not of type float or int." f" Received: '{type(term_cfg.weight)}'." ) # resolve common parameters self._resolve_common_term_cfg(term_name, term_cfg, min_argc=1) # add function to list self._term_names.append(term_name) self._term_cfgs.append(term_cfg) # check if the term is a class if isinstance(term_cfg.func, ManagerTermBase): self._class_term_cfgs.append(term_cfg)
8,148
Python
35.379464
109
0.602111
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/action_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Action manager for processing actions sent to the environment.""" from __future__ import annotations import torch from abc import abstractmethod from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING from omni.isaac.orbit.assets import AssetBase from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import ActionTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv class ActionTerm(ManagerTermBase): """Base class for action terms. The action term is responsible for processing the raw actions sent to the environment and applying them to the asset managed by the term. The action term is comprised of two operations: * Processing of actions: This operation is performed once per **environment step** and is responsible for pre-processing the raw actions sent to the environment. * Applying actions: This operation is performed once per **simulation step** and is responsible for applying the processed actions to the asset managed by the term. """ def __init__(self, cfg: ActionTermCfg, env: BaseEnv): """Initialize the action term. Args: cfg: The configuration object. env: The environment instance. """ # call the base class constructor super().__init__(cfg, env) # parse config to obtain asset to which the term is applied self._asset: AssetBase = self._env.scene[self.cfg.asset_name] """ Properties. """ @property @abstractmethod def action_dim(self) -> int: """Dimension of the action term.""" raise NotImplementedError @property @abstractmethod def raw_actions(self) -> torch.Tensor: """The input/raw actions sent to the term.""" raise NotImplementedError @property @abstractmethod def processed_actions(self) -> torch.Tensor: """The actions computed by the term after applying any processing.""" raise NotImplementedError """ Operations. """ @abstractmethod def process_actions(self, actions: torch.Tensor): """Processes the actions sent to the environment. Note: This function is called once per environment step by the manager. Args: actions: The actions to process. """ raise NotImplementedError @abstractmethod def apply_actions(self): """Applies the actions to the asset managed by the term. Note: This is called at every simulation step by the manager. """ raise NotImplementedError class ActionManager(ManagerBase): """Manager for processing and applying actions for a given world. The action manager handles the interpretation and application of user-defined actions on a given world. It is comprised of different action terms that decide the dimension of the expected actions. The action manager performs operations at two stages: * processing of actions: It splits the input actions to each term and performs any pre-processing needed. This should be called once at every environment step. * apply actions: This operation typically sets the processed actions into the assets in the scene (such as robots). It should be called before every simulation step. """ def __init__(self, cfg: object, env: BaseEnv): """Initialize the action manager. Args: cfg: The configuration object or dictionary (``dict[str, ActionTermCfg]``). env: The environment instance. """ super().__init__(cfg, env) # create buffers to store actions self._action = torch.zeros((self.num_envs, self.total_action_dim), device=self.device) self._prev_action = torch.zeros_like(self._action) def __str__(self) -> str: """Returns: A string representation for action manager.""" msg = f"<ActionManager> contains {len(self._term_names)} active terms.\n" # create table for term information table = PrettyTable() table.title = f"Active Action Terms (shape: {self.total_action_dim})" table.field_names = ["Index", "Name", "Dimension"] # set alignment of table columns table.align["Name"] = "l" table.align["Dimension"] = "r" # add info on each term for index, (name, term) in enumerate(self._terms.items()): table.add_row([index, name, term.action_dim]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def total_action_dim(self) -> int: """Total dimension of actions.""" return sum(self.action_term_dim) @property def active_terms(self) -> list[str]: """Name of active action terms.""" return self._term_names @property def action_term_dim(self) -> list[int]: """Shape of each action term.""" return [term.action_dim for term in self._terms.values()] @property def action(self) -> torch.Tensor: """The actions sent to the environment. Shape is (num_envs, total_action_dim).""" return self._action @property def prev_action(self) -> torch.Tensor: """The previous actions sent to the environment. Shape is (num_envs, total_action_dim).""" return self._prev_action """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, torch.Tensor]: """Resets the action history. Args: env_ids: The environment ids. Defaults to None, in which case all environments are considered. Returns: An empty dictionary. """ # resolve environment ids if env_ids is None: env_ids = slice(None) # reset the action history self._prev_action[env_ids] = 0.0 self._action[env_ids] = 0.0 # reset all action terms for term in self._terms.values(): term.reset(env_ids=env_ids) # nothing to log here return {} def process_action(self, action: torch.Tensor): """Processes the actions sent to the environment. Note: This function should be called once per environment step. Args: action: The actions to process. """ # check if action dimension is valid if self.total_action_dim != action.shape[1]: raise ValueError(f"Invalid action shape, expected: {self.total_action_dim}, received: {action.shape[1]}.") # store the input actions self._prev_action[:] = self._action self._action[:] = action.to(self.device) # split the actions and apply to each tensor idx = 0 for term in self._terms.values(): term_actions = action[:, idx : idx + term.action_dim] term.process_actions(term_actions) idx += term.action_dim def apply_action(self) -> None: """Applies the actions to the environment/simulation. Note: This should be called at every simulation step. """ for term in self._terms.values(): term.apply_actions() def get_term(self, name: str) -> ActionTerm: """Returns the action term with the specified name. Args: name: The name of the action term. Returns: The action term with the specified name. """ return self._terms[name] """ Helper functions. """ def _prepare_terms(self): """Prepares a list of action terms.""" # parse action terms from the config self._term_names: list[str] = list() self._terms: dict[str, ActionTerm] = dict() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() for term_name, term_cfg in cfg_items: # check if term config is None if term_cfg is None: continue # check valid type if not isinstance(term_cfg, ActionTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type ActionTermCfg." f" Received: '{type(term_cfg)}'." ) # create the action term term = term_cfg.class_type(term_cfg, self._env) # sanity check if term is valid type if not isinstance(term, ActionTerm): raise TypeError(f"Returned object for the term '{term_name}' is not of type ActionType.") # add term name and parameters self._term_names.append(term_name) self._terms[term_name] = term
9,069
Python
31.862319
118
0.614732
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/managers/termination_manager.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Termination manager for computing done signals for a given world.""" from __future__ import annotations import torch from collections.abc import Sequence from prettytable import PrettyTable from typing import TYPE_CHECKING from .manager_base import ManagerBase, ManagerTermBase from .manager_term_cfg import TerminationTermCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv class TerminationManager(ManagerBase): """Manager for computing done signals for a given world. The termination manager computes the termination signal (also called dones) as a combination of termination terms. Each termination term is a function which takes the environment as an argument and returns a boolean tensor of shape (num_envs,). The termination manager computes the termination signal as the union (logical or) of all the termination terms. Following the `Gymnasium API <https://gymnasium.farama.org/tutorials/gymnasium_basics/handling_time_limits/>`_, the termination signal is computed as the logical OR of the following signals: * **Time-out**: This signal is set to true if the environment has ended after an externally defined condition (that is outside the scope of a MDP). For example, the environment may be terminated if the episode has timed out (i.e. reached max episode length). * **Terminated**: This signal is set to true if the environment has reached a terminal state defined by the environment. This state may correspond to task success, task failure, robot falling, etc. These signals can be individually accessed using the :attr:`time_outs` and :attr:`terminated` properties. The termination terms are parsed from a config class containing the manager's settings and each term's parameters. Each termination term should instantiate the :class:`TerminationTermCfg` class. The term's configuration :attr:`TerminationTermCfg.time_out` decides whether the term is a timeout or a termination term. """ _env: RLTaskEnv """The environment instance.""" def __init__(self, cfg: object, env: RLTaskEnv): """Initializes the termination manager. Args: cfg: The configuration object or dictionary (``dict[str, TerminationTermCfg]``). env: An environment object. """ super().__init__(cfg, env) # prepare extra info to store individual termination term information self._term_dones = dict() for term_name in self._term_names: self._term_dones[term_name] = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool) # create buffer for managing termination per environment self._truncated_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool) self._terminated_buf = torch.zeros_like(self._truncated_buf) def __str__(self) -> str: """Returns: A string representation for termination manager.""" msg = f"<TerminationManager> contains {len(self._term_names)} active terms.\n" # create table for term information table = PrettyTable() table.title = "Active Termination Terms" table.field_names = ["Index", "Name", "Time Out"] # set alignment of table columns table.align["Name"] = "l" # add info on each term for index, (name, term_cfg) in enumerate(zip(self._term_names, self._term_cfgs)): table.add_row([index, name, term_cfg.time_out]) # convert table to string msg += table.get_string() msg += "\n" return msg """ Properties. """ @property def active_terms(self) -> list[str]: """Name of active termination terms.""" return self._term_names @property def dones(self) -> torch.Tensor: """The net termination signal. Shape is (num_envs,).""" return self._truncated_buf | self._terminated_buf @property def time_outs(self) -> torch.Tensor: """The timeout signal (reaching max episode length). Shape is (num_envs,). This signal is set to true if the environment has ended after an externally defined condition (that is outside the scope of a MDP). For example, the environment may be terminated if the episode has timed out (i.e. reached max episode length). """ return self._truncated_buf @property def terminated(self) -> torch.Tensor: """The terminated signal (reaching a terminal state). Shape is (num_envs,). This signal is set to true if the environment has reached a terminal state defined by the environment. This state may correspond to task success, task failure, robot falling, etc. """ return self._terminated_buf """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, torch.Tensor]: """Returns the episodic counts of individual termination terms. Args: env_ids: The environment ids. Defaults to None, in which case all environments are considered. Returns: Dictionary of episodic sum of individual reward terms. """ # resolve environment ids if env_ids is None: env_ids = slice(None) # add to episode dict extras = {} for key in self._term_dones.keys(): # store information extras["Episode Termination/" + key] = torch.count_nonzero(self._term_dones[key][env_ids]).item() # reset all the reward terms for term_cfg in self._class_term_cfgs: term_cfg.func.reset(env_ids=env_ids) # return logged information return extras def compute(self) -> torch.Tensor: """Computes the termination signal as union of individual terms. This function calls each termination term managed by the class and performs a logical OR operation to compute the net termination signal. Returns: The combined termination signal of shape (num_envs,). """ # reset computation self._truncated_buf[:] = False self._terminated_buf[:] = False # iterate over all the termination terms for name, term_cfg in zip(self._term_names, self._term_cfgs): value = term_cfg.func(self._env, **term_cfg.params) # store timeout signal separately if term_cfg.time_out: self._truncated_buf |= value else: self._terminated_buf |= value # add to episode dones self._term_dones[name][:] = value # return combined termination signal return self._truncated_buf | self._terminated_buf def get_term(self, name: str) -> torch.Tensor: """Returns the termination term with the specified name. Args: name: The name of the termination term. Returns: The corresponding termination term value. Shape is (num_envs,). """ return self._term_dones[name] """ Operations - Term settings. """ def set_term_cfg(self, term_name: str, cfg: TerminationTermCfg): """Sets the configuration of the specified term into the manager. Args: term_name: The name of the termination term. cfg: The configuration for the termination term. Raises: ValueError: If the term name is not found. """ if term_name not in self._term_names: raise ValueError(f"Termination term '{term_name}' not found.") # set the configuration self._term_cfgs[self._term_names.index(term_name)] = cfg def get_term_cfg(self, term_name: str) -> TerminationTermCfg: """Gets the configuration for the specified term. Args: term_name: The name of the termination term. Returns: The configuration of the termination term. Raises: ValueError: If the term name is not found. """ if term_name not in self._term_names: raise ValueError(f"Termination term '{term_name}' not found.") # return the configuration return self._term_cfgs[self._term_names.index(term_name)] """ Helper functions. """ def _prepare_terms(self): """Prepares a list of termination functions.""" # parse remaining termination terms and decimate their information self._term_names: list[str] = list() self._term_cfgs: list[TerminationTermCfg] = list() self._class_term_cfgs: list[TerminationTermCfg] = list() # check if config is dict already if isinstance(self.cfg, dict): cfg_items = self.cfg.items() else: cfg_items = self.cfg.__dict__.items() # iterate over all the terms for term_name, term_cfg in cfg_items: # check for non config if term_cfg is None: continue # check for valid config type if not isinstance(term_cfg, TerminationTermCfg): raise TypeError( f"Configuration for the term '{term_name}' is not of type TerminationTermCfg." f" Received: '{type(term_cfg)}'." ) # resolve common parameters self._resolve_common_term_cfg(term_name, term_cfg, min_argc=1) # add function to list self._term_names.append(term_name) self._term_cfgs.append(term_cfg) # check if the term is a class if isinstance(term_cfg.func, ManagerTermBase): self._class_term_cfgs.append(term_cfg)
9,845
Python
38.071428
115
0.634027
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/rmp_flow.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from dataclasses import MISSING import omni.isaac.core.utils.prims as prim_utils from omni.isaac.core.articulations import Articulation from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.motion_generation import ArticulationMotionPolicy from omni.isaac.motion_generation.lula.motion_policies import RmpFlow, RmpFlowSmoothed from omni.isaac.orbit.utils import configclass @configclass class RmpFlowControllerCfg: """Configuration for RMP-Flow controller (provided through LULA library).""" name: str = "rmp_flow" """Name of the controller. Supported: "rmp_flow", "rmp_flow_smoothed". Defaults to "rmp_flow".""" config_file: str = MISSING """Path to the configuration file for the controller.""" urdf_file: str = MISSING """Path to the URDF model of the robot.""" collision_file: str = MISSING """Path to collision model description of the robot.""" frame_name: str = MISSING """Name of the robot frame for task space (must be present in the URDF).""" evaluations_per_frame: float = MISSING """Number of substeps during Euler integration inside LULA world model.""" ignore_robot_state_updates: bool = False """If true, then state of the world model inside controller is rolled out. Defaults to False.""" class RmpFlowController: """Wraps around RMPFlow from IsaacSim for batched environments.""" def __init__(self, cfg: RmpFlowControllerCfg, device: str): """Initialize the controller. Args: cfg: The configuration for the controller. device: The device to use for computation. """ # store input self.cfg = cfg self._device = device # display info print(f"[INFO]: Loading RMPFlow controller URDF from: {self.cfg.urdf_file}") """ Properties. """ @property def num_actions(self) -> int: """Dimension of the action space of controller.""" return 7 """ Operations. """ def initialize(self, prim_paths_expr: str): """Initialize the controller. Args: prim_paths_expr: The expression to find the articulation prim paths. """ # obtain the simulation time physics_dt = SimulationContext.instance().get_physics_dt() # find all prims self._prim_paths = prim_utils.find_matching_prim_paths(prim_paths_expr) self.num_robots = len(self._prim_paths) # resolve controller if self.cfg.name == "rmp_flow": controller_cls = RmpFlow elif self.cfg.name == "rmp_flow_smoothed": controller_cls = RmpFlowSmoothed else: raise ValueError(f"Unsupported controller in Lula library: {self.cfg.name}") # create all franka robots references and their controllers self.articulation_policies = list() for prim_path in self._prim_paths: # add robot reference robot = Articulation(prim_path) robot.initialize() # add controller rmpflow = controller_cls( robot_description_path=self.cfg.collision_file, urdf_path=self.cfg.urdf_file, rmpflow_config_path=self.cfg.config_file, end_effector_frame_name=self.cfg.frame_name, maximum_substep_size=physics_dt / self.cfg.evaluations_per_frame, ignore_robot_state_updates=self.cfg.ignore_robot_state_updates, ) # wrap rmpflow to connect to the Franka robot articulation articulation_policy = ArticulationMotionPolicy(robot, rmpflow, physics_dt) self.articulation_policies.append(articulation_policy) # get number of active joints self.active_dof_names = self.articulation_policies[0].get_motion_policy().get_active_joints() self.num_dof = len(self.active_dof_names) # create buffers # -- for storing command self._command = torch.zeros(self.num_robots, self.num_actions, device=self._device) # -- for policy output self.dof_pos_target = torch.zeros((self.num_robots, self.num_dof), device=self._device) self.dof_vel_target = torch.zeros((self.num_robots, self.num_dof), device=self._device) def reset_idx(self, robot_ids: torch.Tensor = None): """Reset the internals.""" # if no robot ids are provided, then reset all robots if robot_ids is None: robot_ids = torch.arange(self.num_robots, device=self._device) # reset policies for specified robots for index in robot_ids: self.articulation_policies[index].motion_policy.reset() def set_command(self, command: torch.Tensor): """Set target end-effector pose command.""" # store command self._command[:] = command def compute(self) -> tuple[torch.Tensor, torch.Tensor]: """Performs inference with the controller. Returns: The target joint positions and velocity commands. """ # convert command to numpy command = self._command.cpu().numpy() # compute control actions for i, policy in enumerate(self.articulation_policies): # enable type-hinting policy: ArticulationMotionPolicy # set rmpflow target to be the current position of the target cube. policy.get_motion_policy().set_end_effector_target( target_position=command[i, 0:3], target_orientation=command[i, 3:7] ) # apply action on the robot action = policy.get_next_articulation_action() # copy actions into buffer self.dof_pos_target[i, :] = torch.from_numpy(action.joint_positions[:]).to(self.dof_pos_target) self.dof_vel_target[i, :] = torch.from_numpy(action.joint_velocities[:]).to(self.dof_vel_target) return self.dof_pos_target, self.dof_vel_target
6,146
Python
39.440789
108
0.643345
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for different controllers and motion-generators. Controllers or motion generators are responsible for closed-loop tracking of a given command. The controller can be a simple PID controller or a more complex controller such as impedance control or inverse kinematics control. The controller is responsible for generating the desired joint-level commands to be sent to the robot. """ from .differential_ik import DifferentialIKController from .differential_ik_cfg import DifferentialIKControllerCfg
637
Python
38.874998
99
0.814757
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/operational_space.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from dataclasses import MISSING from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.math import apply_delta_pose, compute_pose_error @configclass class OperationSpaceControllerCfg: """Configuration for operation-space controller.""" command_types: Sequence[str] = MISSING """Type of command. It has two sub-strings joined by underscore: - type of command mode: "position", "pose", "force" - type of command resolving: "abs" (absolute), "rel" (relative) """ impedance_mode: str = MISSING """Type of gains for motion control: "fixed", "variable", "variable_kp".""" uncouple_motion_wrench: bool = False """Whether to decouple the wrench computation from task-space pose (motion) error.""" motion_control_axes: Sequence[int] = (1, 1, 1, 1, 1, 1) """Motion direction to control. Mark as 0/1 for each axis.""" force_control_axes: Sequence[int] = (0, 0, 0, 0, 0, 0) """Force direction to control. Mark as 0/1 for each axis.""" inertial_compensation: bool = False """Whether to perform inertial compensation for motion control (inverse dynamics).""" gravity_compensation: bool = False """Whether to perform gravity compensation.""" stiffness: float | Sequence[float] = MISSING """The positional gain for determining wrenches based on task-space pose error.""" damping_ratio: float | Sequence[float] | None = None """The damping ratio is used in-conjunction with positional gain to compute wrenches based on task-space velocity error. The following math operation is performed for computing velocity gains: :math:`d_gains = 2 * sqrt(p_gains) * damping_ratio`. """ stiffness_limits: tuple[float, float] = (0, 300) """Minimum and maximum values for positional gains. Note: Used only when :obj:`impedance_mode` is "variable" or "variable_kp". """ damping_ratio_limits: tuple[float, float] = (0, 100) """Minimum and maximum values for damping ratios used to compute velocity gains. Note: Used only when :obj:`impedance_mode` is "variable". """ force_stiffness: float | Sequence[float] = None """The positional gain for determining wrenches for closed-loop force control. If obj:`None`, then open-loop control of desired forces is performed. """ position_command_scale: tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the position command received. Used only in relative mode.""" rotation_command_scale: tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the rotation command received. Used only in relative mode.""" class OperationSpaceController: """Operation-space controller. Reference: [1] https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf """ def __init__(self, cfg: OperationSpaceControllerCfg, num_robots: int, num_dof: int, device: str): """Initialize operation-space controller. Args: cfg: The configuration for operation-space controller. num_robots: The number of robots to control. num_dof: The number of degrees of freedom of the robot. device: The device to use for computations. Raises: ValueError: When invalid control command is provided. """ # store inputs self.cfg = cfg self.num_robots = num_robots self.num_dof = num_dof self._device = device # resolve tasks-pace target dimensions self.target_list = list() for command_type in self.cfg.command_types: if "position" in command_type: self.target_list.append(3) elif command_type == "pose_rel": self.target_list.append(6) elif command_type == "pose_abs": self.target_list.append(7) elif command_type == "force_abs": self.target_list.append(6) else: raise ValueError(f"Invalid control command: {command_type}.") self.target_dim = sum(self.target_list) # create buffers # -- selection matrices self._selection_matrix_motion = torch.diag( torch.tensor(self.cfg.motion_control_axes, dtype=torch.float, device=self._device) ) self._selection_matrix_force = torch.diag( torch.tensor(self.cfg.force_control_axes, dtype=torch.float, device=self._device) ) # -- commands self._task_space_target = torch.zeros(self.num_robots, self.target_dim, device=self._device) # -- scaling of command self._position_command_scale = torch.diag(torch.tensor(self.cfg.position_command_scale, device=self._device)) self._rotation_command_scale = torch.diag(torch.tensor(self.cfg.rotation_command_scale, device=self._device)) # -- motion control gains self._p_gains = torch.zeros(self.num_robots, 6, device=self._device) self._p_gains[:] = torch.tensor(self.cfg.stiffness, device=self._device) self._d_gains = 2 * torch.sqrt(self._p_gains) * torch.tensor(self.cfg.damping_ratio, device=self._device) # -- force control gains if self.cfg.force_stiffness is not None: self._p_wrench_gains = torch.zeros(self.num_robots, 6, device=self._device) self._p_wrench_gains[:] = torch.tensor(self.cfg.force_stiffness, device=self._device) else: self._p_wrench_gains = None # -- position gain limits self._p_gains_limits = torch.zeros(self.num_robots, 6, device=self._device) self._p_gains_limits[..., 0], self._p_gains_limits[..., 1] = ( self.cfg.stiffness_limits[0], self.cfg.stiffness_limits[1], ) # -- damping ratio limits self._damping_ratio_limits = torch.zeros_like(self._p_gains_limits) self._damping_ratio_limits[..., 0], self._damping_ratio_limits[..., 1] = ( self.cfg.damping_ratio_limits[0], self.cfg.damping_ratio_limits[1], ) # -- storing outputs self._desired_torques = torch.zeros(self.num_robots, self.num_dof, self.num_dof, device=self._device) """ Properties. """ @property def num_actions(self) -> int: """Dimension of the action space of controller.""" # impedance mode if self.cfg.impedance_mode == "fixed": # task-space pose return self.target_dim elif self.cfg.impedance_mode == "variable_kp": # task-space pose + stiffness return self.target_dim + 6 elif self.cfg.impedance_mode == "variable": # task-space pose + stiffness + damping return self.target_dim + 6 + 6 else: raise ValueError(f"Invalid impedance mode: {self.cfg.impedance_mode}.") """ Operations. """ def initialize(self): """Initialize the internals.""" pass def reset_idx(self, robot_ids: torch.Tensor = None): """Reset the internals.""" pass def set_command(self, command: torch.Tensor): """Set target end-effector pose or force command. Args: command: The target end-effector pose or force command. """ # check input size if command.shape != (self.num_robots, self.num_actions): raise ValueError( f"Invalid command shape '{command.shape}'. Expected: '{(self.num_robots, self.num_actions)}'." ) # impedance mode if self.cfg.impedance_mode == "fixed": # joint positions self._task_space_target[:] = command elif self.cfg.impedance_mode == "variable_kp": # split input command task_space_command, stiffness = torch.tensor_split(command, (self.target_dim, 6), dim=-1) # format command stiffness = stiffness.clip_(min=self._p_gains_limits[0], max=self._p_gains_limits[1]) # joint positions + stiffness self._task_space_target[:] = task_space_command.squeeze(dim=-1) self._p_gains[:] = stiffness self._d_gains[:] = 2 * torch.sqrt(self._p_gains) # critically damped elif self.cfg.impedance_mode == "variable": # split input command task_space_command, stiffness, damping_ratio = torch.tensor_split(command, 3, dim=-1) # format command stiffness = stiffness.clip_(min=self._p_gains_limits[0], max=self._p_gains_limits[1]) damping_ratio = damping_ratio.clip_(min=self._damping_ratio_limits[0], max=self._damping_ratio_limits[1]) # joint positions + stiffness + damping self._task_space_target[:] = task_space_command self._p_gains[:] = stiffness self._d_gains[:] = 2 * torch.sqrt(self._p_gains) * damping_ratio else: raise ValueError(f"Invalid impedance mode: {self.cfg.impedance_mode}.") def compute( self, jacobian: torch.Tensor, ee_pose: torch.Tensor | None = None, ee_vel: torch.Tensor | None = None, ee_force: torch.Tensor | None = None, mass_matrix: torch.Tensor | None = None, gravity: torch.Tensor | None = None, ) -> torch.Tensor: """Performs inference with the controller. Args: jacobian: The Jacobian matrix of the end-effector. ee_pose: The current end-effector pose. It is a tensor of shape (num_robots, 7), which contains the position and quaternion (w, x, y, z). Defaults to None. ee_vel: The current end-effector velocity. It is a tensor of shape (num_robots, 6), which contains the linear and angular velocities. Defaults to None. ee_force: The current external force on the end-effector. It is a tensor of shape (num_robots, 3), which contains the linear force. Defaults to None. mass_matrix: The joint-space inertial matrix. Defaults to None. gravity: The joint-space gravity vector. Defaults to None. Raises: ValueError: When the end-effector pose is not provided for the 'position_rel' command. ValueError: When the end-effector pose is not provided for the 'position_abs' command. ValueError: When the end-effector pose is not provided for the 'pose_rel' command. ValueError: When an invalid command type is provided. ValueError: When motion-control is enabled but the end-effector pose or velocity is not provided. ValueError: When force-control is enabled but the end-effector force is not provided. ValueError: When inertial compensation is enabled but the mass matrix is not provided. ValueError: When gravity compensation is enabled but the gravity vector is not provided. Returns: The target joint torques commands. """ # buffers for motion/force control desired_ee_pos = None desired_ee_rot = None desired_ee_force = None # resolve the commands target_groups = torch.split(self._task_space_target, self.target_list) for command_type, target in zip(self.cfg.command_types, target_groups): if command_type == "position_rel": # check input is provided if ee_pose is None: raise ValueError("End-effector pose is required for 'position_rel' command.") # scale command target @= self._position_command_scale # compute targets desired_ee_pos = ee_pose[:, :3] + target desired_ee_rot = ee_pose[:, 3:] elif command_type == "position_abs": # check input is provided if ee_pose is None: raise ValueError("End-effector pose is required for 'position_abs' command.") # compute targets desired_ee_pos = target desired_ee_rot = ee_pose[:, 3:] elif command_type == "pose_rel": # check input is provided if ee_pose is None: raise ValueError("End-effector pose is required for 'pose_rel' command.") # scale command target[:, 0:3] @= self._position_command_scale target[:, 3:6] @= self._rotation_command_scale # compute targets desired_ee_pos, desired_ee_rot = apply_delta_pose(ee_pose[:, :3], ee_pose[:, 3:], target) elif command_type == "pose_abs": # compute targets desired_ee_pos = target[:, 0:3] desired_ee_rot = target[:, 3:7] elif command_type == "force_abs": # compute targets desired_ee_force = target else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") # reset desired joint torques self._desired_torques[:] = 0 # compute for motion-control if desired_ee_pos is not None: # check input is provided if ee_pose is None or ee_vel is None: raise ValueError("End-effector pose and velocity are required for motion control.") # -- end-effector tracking error pose_error = compute_pose_error( ee_pose[:, :3], ee_pose[:, 3:], desired_ee_pos, desired_ee_rot, rot_error_type="axis_angle" ) velocity_error = -ee_vel # zero target velocity # -- desired end-effector acceleration (spring damped system) des_ee_acc = self._p_gains * pose_error + self._d_gains * velocity_error # -- inertial compensation if self.cfg.inertial_compensation: # check input is provided if mass_matrix is None: raise ValueError("Mass matrix is required for inertial compensation.") # compute task-space dynamics quantities # wrench = (J M^(-1) J^T)^(-1) * \ddot(x_des) mass_matrix_inv = torch.inverse(mass_matrix) if self.cfg.uncouple_motion_wrench: # decoupled-mass matrices lambda_pos = torch.inverse(jacobian[:, 0:3] @ mass_matrix_inv * jacobian[:, 0:3].T) lambda_ori = torch.inverse(jacobian[:, 3:6] @ mass_matrix_inv * jacobian[:, 3:6].T) # desired end-effector wrench (from pseudo-dynamics) decoupled_force = lambda_pos @ des_ee_acc[:, 0:3] decoupled_torque = lambda_ori @ des_ee_acc[:, 3:6] des_motion_wrench = torch.cat(decoupled_force, decoupled_torque) else: # coupled dynamics lambda_full = torch.inverse(jacobian @ mass_matrix_inv * jacobian.T) # desired end-effector wrench (from pseudo-dynamics) des_motion_wrench = lambda_full @ des_ee_acc else: # task-space impedance control # wrench = \ddot(x_des) des_motion_wrench = des_ee_acc # -- joint-space wrench self._desired_torques += jacobian.T @ self._selection_matrix_motion @ des_motion_wrench # compute for force control if desired_ee_force is not None: # -- task-space wrench if self.cfg.stiffness is not None: # check input is provided if ee_force is None: raise ValueError("End-effector force is required for closed-loop force control.") # closed-loop control des_force_wrench = desired_ee_force + self._p_wrench_gains * (desired_ee_force - ee_force) else: # open-loop control des_force_wrench = desired_ee_force # -- joint-space wrench self._desired_torques += jacobian.T @ self._selection_matrix_force @ des_force_wrench # add gravity compensation (bias correction) if self.cfg.gravity_compensation: # check input is provided if gravity is None: raise ValueError("Gravity vector is required for gravity compensation.") # add gravity compensation self._desired_torques += gravity return self._desired_torques
16,820
Python
44.462162
153
0.597265
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/differential_ik.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.utils.math import apply_delta_pose, compute_pose_error if TYPE_CHECKING: from .differential_ik_cfg import DifferentialIKControllerCfg class DifferentialIKController: r"""Differential inverse kinematics (IK) controller. This controller is based on the concept of differential inverse kinematics [1, 2] which is a method for computing the change in joint positions that yields the desired change in pose. .. math:: \Delta \mathbf{q} = \mathbf{J}^{\dagger} \Delta \mathbf{x} \mathbf{q}_{\text{desired}} = \mathbf{q}_{\text{current}} + \Delta \mathbf{q} where :math:`\mathbf{J}^{\dagger}` is the pseudo-inverse of the Jacobian matrix :math:`\mathbf{J}`, :math:`\Delta \mathbf{x}` is the desired change in pose, and :math:`\mathbf{q}_{\text{current}}` is the current joint positions. To deal with singularity in Jacobian, the following methods are supported for computing inverse of the Jacobian: - "pinv": Moore-Penrose pseudo-inverse - "svd": Adaptive singular-value decomposition (SVD) - "trans": Transpose of matrix - "dls": Damped version of Moore-Penrose pseudo-inverse (also called Levenberg-Marquardt) .. caution:: The controller does not assume anything about the frames of the current and desired end-effector pose, or the joint-space velocities. It is up to the user to ensure that these quantities are given in the correct format. Reference: [1] https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf [2] https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf """ def __init__(self, cfg: DifferentialIKControllerCfg, num_envs: int, device: str): """Initialize the controller. Args: cfg: The configuration for the controller. num_envs: The number of environments. device: The device to use for computations. """ # store inputs self.cfg = cfg self.num_envs = num_envs self._device = device # create buffers self.ee_pos_des = torch.zeros(self.num_envs, 3, device=self._device) self.ee_quat_des = torch.zeros(self.num_envs, 4, device=self._device) # -- input command self._command = torch.zeros(self.num_envs, self.action_dim, device=self._device) """ Properties. """ @property def action_dim(self) -> int: """Dimension of the controller's input command.""" if self.cfg.command_type == "position": return 3 # (x, y, z) elif self.cfg.command_type == "pose" and self.cfg.use_relative_mode: return 6 # (dx, dy, dz, droll, dpitch, dyaw) else: return 7 # (x, y, z, qw, qx, qy, qz) """ Operations. """ def reset(self, env_ids: torch.Tensor = None): """Reset the internals. Args: env_ids: The environment indices to reset. If None, then all environments are reset. """ pass def set_command( self, command: torch.Tensor, ee_pos: torch.Tensor | None = None, ee_quat: torch.Tensor | None = None ): """Set target end-effector pose command. Based on the configured command type and relative mode, the method computes the desired end-effector pose. It is up to the user to ensure that the command is given in the correct frame. The method only applies the relative mode if the command type is ``position_rel`` or ``pose_rel``. Args: command: The input command in shape (N, 3) or (N, 6) or (N, 7). ee_pos: The current end-effector position in shape (N, 3). This is only needed if the command type is ``position_rel`` or ``pose_rel``. ee_quat: The current end-effector orientation (w, x, y, z) in shape (N, 4). This is only needed if the command type is ``position_*`` or ``pose_rel``. Raises: ValueError: If the command type is ``position_*`` and :attr:`ee_quat` is None. ValueError: If the command type is ``position_rel`` and :attr:`ee_pos` is None. ValueError: If the command type is ``pose_rel`` and either :attr:`ee_pos` or :attr:`ee_quat` is None. """ # store command self._command[:] = command # compute the desired end-effector pose if self.cfg.command_type == "position": # we need end-effector orientation even though we are in position mode # this is only needed for display purposes if ee_quat is None: raise ValueError("End-effector orientation can not be None for `position_*` command type!") # compute targets if self.cfg.use_relative_mode: if ee_pos is None: raise ValueError("End-effector position can not be None for `position_rel` command type!") self.ee_pos_des[:] = ee_pos + self._command self.ee_quat_des[:] = ee_quat else: self.ee_pos_des[:] = self._command self.ee_quat_des[:] = ee_quat else: # compute targets if self.cfg.use_relative_mode: if ee_pos is None or ee_quat is None: raise ValueError( "Neither end-effector position nor orientation can be None for `pose_rel` command type!" ) self.ee_pos_des, self.ee_quat_des = apply_delta_pose(ee_pos, ee_quat, self._command) else: self.ee_pos_des = self._command[:, 0:3] self.ee_quat_des = self._command[:, 3:7] def compute( self, ee_pos: torch.Tensor, ee_quat: torch.Tensor, jacobian: torch.Tensor, joint_pos: torch.Tensor ) -> torch.Tensor: """Computes the target joint positions that will yield the desired end effector pose. Args: ee_pos: The current end-effector position in shape (N, 3). ee_quat: The current end-effector orientation in shape (N, 4). jacobian: The geometric jacobian matrix in shape (N, 6, num_joints). joint_pos: The current joint positions in shape (N, num_joints). Returns: The target joint positions commands in shape (N, num_joints). """ # compute the delta in joint-space if "position" in self.cfg.command_type: position_error = self.ee_pos_des - ee_pos jacobian_pos = jacobian[:, 0:3] delta_joint_pos = self._compute_delta_joint_pos(delta_pose=position_error, jacobian=jacobian_pos) else: position_error, axis_angle_error = compute_pose_error( ee_pos, ee_quat, self.ee_pos_des, self.ee_quat_des, rot_error_type="axis_angle" ) pose_error = torch.cat((position_error, axis_angle_error), dim=1) delta_joint_pos = self._compute_delta_joint_pos(delta_pose=pose_error, jacobian=jacobian) # return the desired joint positions return joint_pos + delta_joint_pos """ Helper functions. """ def _compute_delta_joint_pos(self, delta_pose: torch.Tensor, jacobian: torch.Tensor) -> torch.Tensor: """Computes the change in joint position that yields the desired change in pose. The method uses the Jacobian mapping from joint-space velocities to end-effector velocities to compute the delta-change in the joint-space that moves the robot closer to a desired end-effector position. Args: delta_pose: The desired delta pose in shape (N, 3) or (N, 6). jacobian: The geometric jacobian matrix in shape (N, 3, num_joints) or (N, 6, num_joints). Returns: The desired delta in joint space. Shape is (N, num-jointsß). """ if self.cfg.ik_params is None: raise RuntimeError(f"Inverse-kinematics parameters for method '{self.cfg.ik_method}' is not defined!") # compute the delta in joint-space if self.cfg.ik_method == "pinv": # Jacobian pseudo-inverse # parameters k_val = self.cfg.ik_params["k_val"] # computation jacobian_pinv = torch.linalg.pinv(jacobian) delta_joint_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_joint_pos = delta_joint_pos.squeeze(-1) elif self.cfg.ik_method == "svd": # adaptive SVD # parameters k_val = self.cfg.ik_params["k_val"] min_singular_value = self.cfg.ik_params["min_singular_value"] # computation # U: 6xd, S: dxd, V: d x num-joint U, S, Vh = torch.linalg.svd(jacobian) S_inv = 1.0 / S S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv)) jacobian_pinv = ( torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2) ) delta_joint_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_joint_pos = delta_joint_pos.squeeze(-1) elif self.cfg.ik_method == "trans": # Jacobian transpose # parameters k_val = self.cfg.ik_params["k_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) delta_joint_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1) delta_joint_pos = delta_joint_pos.squeeze(-1) elif self.cfg.ik_method == "dls": # damped least squares # parameters lambda_val = self.cfg.ik_params["lambda_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) lambda_matrix = (lambda_val**2) * torch.eye(n=jacobian.shape[1], device=self._device) delta_joint_pos = ( jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1) ) delta_joint_pos = delta_joint_pos.squeeze(-1) else: raise ValueError(f"Unsupported inverse-kinematics method: {self.cfg.ik_method}") return delta_joint_pos
10,589
Python
44.06383
153
0.602134
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/differential_ik_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass from .differential_ik import DifferentialIKController @configclass class DifferentialIKControllerCfg: """Configuration for differential inverse kinematics controller.""" class_type: type = DifferentialIKController """The associated controller class.""" command_type: Literal["position", "pose"] = MISSING """Type of task-space command to control the articulation's body. If "position", then the controller only controls the position of the articulation's body. Otherwise, the controller controls the pose of the articulation's body. """ use_relative_mode: bool = False """Whether to use relative mode for the controller. Defaults to False. If True, then the controller treats the input command as a delta change in the position/pose. Otherwise, the controller treats the input command as the absolute position/pose. """ ik_method: Literal["pinv", "svd", "trans", "dls"] = MISSING """Method for computing inverse of Jacobian.""" ik_params: dict[str, float] | None = None """Parameters for the inverse-kinematics method. Defaults to None, in which case the default parameters for the method are used. - Moore-Penrose pseudo-inverse ("pinv"): - "k_val": Scaling of computed delta-joint positions (default: 1.0). - Adaptive Singular Value Decomposition ("svd"): - "k_val": Scaling of computed delta-joint positions (default: 1.0). - "min_singular_value": Single values less than this are suppressed to zero (default: 1e-5). - Jacobian transpose ("trans"): - "k_val": Scaling of computed delta-joint positions (default: 1.0). - Damped Moore-Penrose pseudo-inverse ("dls"): - "lambda_val": Damping coefficient (default: 0.01). """ def __post_init__(self): # check valid input if self.command_type not in ["position", "pose"]: raise ValueError(f"Unsupported inverse-kinematics command: {self.command_type}.") if self.ik_method not in ["pinv", "svd", "trans", "dls"]: raise ValueError(f"Unsupported inverse-kinematics method: {self.ik_method}.") # default parameters for different inverse kinematics approaches. default_ik_params = { "pinv": {"k_val": 1.0}, "svd": {"k_val": 1.0, "min_singular_value": 1e-5}, "trans": {"k_val": 1.0}, "dls": {"lambda_val": 0.01}, } # update parameters for IK-method if not provided ik_params = default_ik_params[self.ik_method].copy() if self.ik_params is not None: ik_params.update(self.ik_params) self.ik_params = ik_params
2,929
Python
39.136986
100
0.665073
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/joint_impedance.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from dataclasses import MISSING from omni.isaac.orbit.utils import configclass @configclass class JointImpedanceControllerCfg: """Configuration for joint impedance regulation controller.""" command_type: str = "p_abs" """Type of command: p_abs (absolute) or p_rel (relative).""" dof_pos_offset: Sequence[float] | None = None """Offset to DOF position command given to controller. (default: None). If None then position offsets are set to zero. """ impedance_mode: str = MISSING """Type of gains: "fixed", "variable", "variable_kp".""" inertial_compensation: bool = False """Whether to perform inertial compensation (inverse dynamics).""" gravity_compensation: bool = False """Whether to perform gravity compensation.""" stiffness: float | Sequence[float] = MISSING """The positional gain for determining desired torques based on joint position error.""" damping_ratio: float | Sequence[float] | None = None """The damping ratio is used in-conjunction with positional gain to compute desired torques based on joint velocity error. The following math operation is performed for computing velocity gains: :math:`d_gains = 2 * sqrt(p_gains) * damping_ratio`. """ stiffness_limits: tuple[float, float] = (0, 300) """Minimum and maximum values for positional gains. Note: Used only when :obj:`impedance_mode` is "variable" or "variable_kp". """ damping_ratio_limits: tuple[float, float] = (0, 100) """Minimum and maximum values for damping ratios used to compute velocity gains. Note: Used only when :obj:`impedance_mode` is "variable". """ class JointImpedanceController: """Joint impedance regulation control. Reference: [1] https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf """ def __init__(self, cfg: JointImpedanceControllerCfg, num_robots: int, dof_pos_limits: torch.Tensor, device: str): """Initialize joint impedance controller. Args: cfg: The configuration for the controller. num_robots: The number of robots to control. dof_pos_limits: The joint position limits for each robot. This is a tensor of shape (num_robots, num_dof, 2) where the last dimension contains the lower and upper limits. device: The device to use for computations. Raises: ValueError: When the shape of :obj:`dof_pos_limits` is not (num_robots, num_dof, 2). """ # check valid inputs if len(dof_pos_limits.shape) != 3: raise ValueError(f"Joint position limits has shape '{dof_pos_limits.shape}'. Expected length of shape = 3.") # store inputs self.cfg = cfg self.num_robots = num_robots self.num_dof = dof_pos_limits.shape[1] # (num_robots, num_dof, 2) self._device = device # create buffers # -- commands self._dof_pos_target = torch.zeros(self.num_robots, self.num_dof, device=self._device) # -- offsets self._dof_pos_offset = torch.zeros(self.num_robots, self.num_dof, device=self._device) # -- limits self._dof_pos_limits = dof_pos_limits # -- positional gains self._p_gains = torch.zeros(self.num_robots, self.num_dof, device=self._device) self._p_gains[:] = torch.tensor(self.cfg.stiffness, device=self._device) # -- velocity gains self._d_gains = torch.zeros(self.num_robots, self.num_dof, device=self._device) self._d_gains[:] = 2 * torch.sqrt(self._p_gains) * torch.tensor(self.cfg.damping_ratio, device=self._device) # -- position offsets if self.cfg.dof_pos_offset is not None: self._dof_pos_offset[:] = torch.tensor(self.cfg.dof_pos_offset, device=self._device) # -- position gain limits self._p_gains_limits = torch.zeros_like(self._dof_pos_limits) self._p_gains_limits[..., 0] = self.cfg.stiffness_limits[0] self._p_gains_limits[..., 1] = self.cfg.stiffness_limits[1] # -- damping ratio limits self._damping_ratio_limits = torch.zeros_like(self._dof_pos_limits) self._damping_ratio_limits[..., 0] = self.cfg.damping_ratio_limits[0] self._damping_ratio_limits[..., 1] = self.cfg.damping_ratio_limits[1] """ Properties. """ @property def num_actions(self) -> int: """Dimension of the action space of controller.""" # impedance mode if self.cfg.impedance_mode == "fixed": # joint positions return self.num_dof elif self.cfg.impedance_mode == "variable_kp": # joint positions + stiffness return self.num_dof * 2 elif self.cfg.impedance_mode == "variable": # joint positions + stiffness + damping return self.num_dof * 3 else: raise ValueError(f"Invalid impedance mode: {self.cfg.impedance_mode}.") """ Operations. """ def initialize(self): """Initialize the internals.""" pass def reset_idx(self, robot_ids: torch.Tensor = None): """Reset the internals.""" pass def set_command(self, command: torch.Tensor): """Set target end-effector pose command. Args: command: The command to set. This is a tensor of shape (num_robots, num_actions) where :obj:`num_actions` is the dimension of the action space of the controller. """ # check input size if command.shape != (self.num_robots, self.num_actions): raise ValueError( f"Invalid command shape '{command.shape}'. Expected: '{(self.num_robots, self.num_actions)}'." ) # impedance mode if self.cfg.impedance_mode == "fixed": # joint positions self._dof_pos_target[:] = command elif self.cfg.impedance_mode == "variable_kp": # split input command dof_pos_command, stiffness = torch.tensor_split(command, 2, dim=-1) # format command stiffness = stiffness.clip_(min=self._p_gains_limits[0], max=self._p_gains_limits[1]) # joint positions + stiffness self._dof_pos_target[:] = dof_pos_command self._p_gains[:] = stiffness self._d_gains[:] = 2 * torch.sqrt(self._p_gains) # critically damped elif self.cfg.impedance_mode == "variable": # split input command dof_pos_command, stiffness, damping_ratio = torch.tensor_split(command, 3, dim=-1) # format command stiffness = stiffness.clip_(min=self._p_gains_limits[0], max=self._p_gains_limits[1]) damping_ratio = damping_ratio.clip_(min=self._damping_ratio_limits[0], max=self._damping_ratio_limits[1]) # joint positions + stiffness + damping self._dof_pos_target[:] = dof_pos_command self._p_gains[:] = stiffness self._d_gains[:] = 2 * torch.sqrt(self._p_gains) * damping_ratio else: raise ValueError(f"Invalid impedance mode: {self.cfg.impedance_mode}.") def compute( self, dof_pos: torch.Tensor, dof_vel: torch.Tensor, mass_matrix: torch.Tensor | None = None, gravity: torch.Tensor | None = None, ) -> torch.Tensor: """Performs inference with the controller. Args: dof_pos: The current joint positions. dof_vel: The current joint velocities. mass_matrix: The joint-space inertial matrix. Defaults to None. gravity: The joint-space gravity vector. Defaults to None. Raises: ValueError: When the command type is invalid. Returns: The target joint torques commands. """ # resolve the command type if self.cfg.command_type == "p_abs": desired_dof_pos = self._dof_pos_target + self._dof_pos_offset elif self.cfg.command_type == "p_rel": desired_dof_pos = self._dof_pos_target + dof_pos else: raise ValueError(f"Invalid dof position command mode: {self.cfg.command_type}.") # compute errors desired_dof_pos = desired_dof_pos.clip_(min=self._dof_pos_limits[..., 0], max=self._dof_pos_limits[..., 1]) dof_pos_error = desired_dof_pos - dof_pos dof_vel_error = -dof_vel # compute acceleration des_dof_acc = self._p_gains * dof_pos_error + self._d_gains * dof_vel_error # compute torques # -- inertial compensation if self.cfg.inertial_compensation: # inverse dynamics control desired_torques = mass_matrix @ des_dof_acc else: # decoupled spring-mass control desired_torques = des_dof_acc # -- gravity compensation (bias correction) if self.cfg.gravity_compensation: desired_torques += gravity return desired_torques
9,320
Python
39.176724
153
0.615558
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/controllers/config/rmp_flow.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import os from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.orbit.controllers.rmp_flow import RmpFlowControllerCfg # Note: RMP-Flow config files for supported robots are stored in the motion_generation extension _RMP_CONFIG_DIR = os.path.join(get_extension_path_from_name("omni.isaac.motion_generation"), "motion_policy_configs") # Path to current directory _CUR_DIR = os.path.dirname(os.path.realpath(__file__)) FRANKA_RMPFLOW_CFG = RmpFlowControllerCfg( config_file=os.path.join(_RMP_CONFIG_DIR, "franka", "rmpflow", "franka_rmpflow_common.yaml"), urdf_file=os.path.join(_CUR_DIR, "data", "lula_franka_gen.urdf"), collision_file=os.path.join(_RMP_CONFIG_DIR, "franka", "rmpflow", "robot_descriptor.yaml"), frame_name="panda_end_effector", evaluations_per_frame=5, ) """Configuration of RMPFlow for Franka arm (default from `omni.isaac.motion_generation`).""" UR10_RMPFLOW_CFG = RmpFlowControllerCfg( config_file=os.path.join(_RMP_CONFIG_DIR, "ur10", "rmpflow", "ur10_rmpflow_config.yaml"), urdf_file=os.path.join(_RMP_CONFIG_DIR, "ur10", "ur10_robot.urdf"), collision_file=os.path.join(_RMP_CONFIG_DIR, "ur10", "rmpflow", "ur10_robot_description.yaml"), frame_name="ee_link", evaluations_per_frame=5, ) """Configuration of RMPFlow for UR10 arm (default from `omni.isaac.motion_generation`)."""
1,542
Python
39.605262
117
0.730869
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package containing simulation-specific functionalities. These include: * Ability to spawn different objects and materials into Omniverse * Define and modify various schemas on USD prims * Converters to obtain USD file from other file formats (such as URDF, OBJ, STL, FBX) * Utility class to control the simulator .. note:: Currently, only a subset of all possible schemas and prims in Omniverse are supported. We are expanding the these set of functions on a need basis. In case, there are specific prims or schemas that you would like to include, please open an issue on GitHub as a feature request elaborating on the required application. To make it convenient to use the module, we recommend importing the module as follows: .. code-block:: python import omni.isaac.orbit.sim as sim_utils """ from .converters import * # noqa: F401, F403 from .schemas import * # noqa: F401, F403 from .simulation_cfg import PhysxCfg, SimulationCfg # noqa: F401, F403 from .simulation_context import SimulationContext, build_simulation_context # noqa: F401, F403 from .spawners import * # noqa: F401, F403 from .utils import * # noqa: F401, F403
1,296
Python
36.057142
95
0.75463
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module with USD-related utilities.""" from __future__ import annotations import functools import inspect import re from collections.abc import Callable from typing import TYPE_CHECKING, Any import carb import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands from omni.isaac.cloner import Cloner from pxr import PhysxSchema, Sdf, Semantics, Usd, UsdGeom, UsdPhysics, UsdShade from omni.isaac.orbit.utils.string import to_camel_case from . import schemas if TYPE_CHECKING: from .spawners.spawner_cfg import SpawnerCfg """ Attribute - Setters. """ def safe_set_attribute_on_usd_schema(schema_api: Usd.APISchemaBase, name: str, value: Any, camel_case: bool): """Set the value of an attribute on its USD schema if it exists. A USD API schema serves as an interface or API for authoring and extracting a set of attributes. They typically derive from the :class:`pxr.Usd.SchemaBase` class. This function checks if the attribute exists on the schema and sets the value of the attribute if it exists. Args: schema_api: The USD schema to set the attribute on. name: The name of the attribute. value: The value to set the attribute to. camel_case: Whether to convert the attribute name to camel case. Raises: TypeError: When the input attribute name does not exist on the provided schema API. """ # if value is None, do nothing if value is None: return # convert attribute name to camel case if camel_case: attr_name = to_camel_case(name, to="CC") else: attr_name = name # retrieve the attribute # reference: https://openusd.org/dev/api/_usd__page__common_idioms.html#Usd_Create_Or_Get_Property attr = getattr(schema_api, f"Create{attr_name}Attr", None) # check if attribute exists if attr is not None: attr().Set(value) else: # think: do we ever need to create the attribute if it doesn't exist? # currently, we are not doing this since the schemas are already created with some defaults. carb.log_error(f"Attribute '{attr_name}' does not exist on prim '{schema_api.GetPath()}'.") raise TypeError(f"Attribute '{attr_name}' does not exist on prim '{schema_api.GetPath()}'.") def safe_set_attribute_on_usd_prim(prim: Usd.Prim, attr_name: str, value: Any, camel_case: bool): """Set the value of a attribute on its USD prim. The function creates a new attribute if it does not exist on the prim. This is because in some cases (such as with shaders), their attributes are not exposed as USD prim properties that can be altered. This function allows us to set the value of the attributes in these cases. Args: prim: The USD prim to set the attribute on. attr_name: The name of the attribute. value: The value to set the attribute to. camel_case: Whether to convert the attribute name to camel case. """ # if value is None, do nothing if value is None: return # convert attribute name to camel case if camel_case: attr_name = to_camel_case(attr_name, to="cC") # resolve sdf type based on value if isinstance(value, bool): sdf_type = Sdf.ValueTypeNames.Bool elif isinstance(value, int): sdf_type = Sdf.ValueTypeNames.Int elif isinstance(value, float): sdf_type = Sdf.ValueTypeNames.Float elif isinstance(value, (tuple, list)) and len(value) == 3 and any(isinstance(v, float) for v in value): sdf_type = Sdf.ValueTypeNames.Float3 elif isinstance(value, (tuple, list)) and len(value) == 2 and any(isinstance(v, float) for v in value): sdf_type = Sdf.ValueTypeNames.Float2 else: raise NotImplementedError( f"Cannot set attribute '{attr_name}' with value '{value}'. Please modify the code to support this type." ) # change property omni.kit.commands.execute( "ChangePropertyCommand", prop_path=Sdf.Path(f"{prim.GetPath()}.{attr_name}"), value=value, prev=None, type_to_create_if_not_exist=sdf_type, usd_context_name=prim.GetStage(), ) """ Decorators. """ def apply_nested(func: Callable) -> Callable: """Decorator to apply a function to all prims under a specified prim-path. The function iterates over the provided prim path and all its children to apply input function to all prims under the specified prim path. If the function succeeds to apply to a prim, it will not look at the children of that prim. This is based on the physics behavior that nested schemas are not allowed. For example, a parent prim and its child prim cannot both have a rigid-body schema applied on them, or it is not possible to have nested articulations. While traversing the prims under the specified prim path, the function will throw a warning if it does not succeed to apply the function to any prim. This is because the user may have intended to apply the function to a prim that does not have valid attributes, or the prim may be an instanced prim. Args: func: The function to apply to all prims under a specified prim-path. The function must take the prim-path and other arguments. It should return a boolean indicating whether the function succeeded or not. Returns: The wrapped function that applies the function to all prims under a specified prim-path. Raises: ValueError: If the prim-path does not exist on the stage. """ @functools.wraps(func) def wrapper(prim_path: str | Sdf.Path, *args, **kwargs): # map args and kwargs to function signature so we can get the stage # note: we do this to check if stage is given in arg or kwarg sig = inspect.signature(func) bound_args = sig.bind(prim_path, *args, **kwargs) # get current stage stage = bound_args.arguments.get("stage") if stage is None: stage = stage_utils.get_current_stage() # get USD prim prim: Usd.Prim = stage.GetPrimAtPath(prim_path) # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim_path}' is not valid.") # add iterable to check if property was applied on any of the prims count_success = 0 instanced_prim_paths = [] # iterate over all prims under prim-path all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) child_prim_path = child_prim.GetPath().pathString # type: ignore # check if prim is a prototype if child_prim.IsInstance(): instanced_prim_paths.append(child_prim_path) continue # set properties success = func(child_prim_path, *args, **kwargs) # if successful, do not look at children # this is based on the physics behavior that nested schemas are not allowed if not success: all_prims += child_prim.GetChildren() else: count_success += 1 # check if we were successful in applying the function to any prim if count_success == 0: carb.log_warn( f"Could not perform '{func.__name__}' on any prims under: '{prim_path}'." " This might be because of the following reasons:" "\n\t(1) The desired attribute does not exist on any of the prims." "\n\t(2) The desired attribute exists on an instanced prim." f"\n\t\tDiscovered list of instanced prim paths: {instanced_prim_paths}" ) return wrapper def clone(func: Callable) -> Callable: """Decorator for cloning a prim based on matching prim paths of the prim's parent. The decorator checks if the parent prim path matches any prim paths in the stage. If so, it clones the spawned prim at each matching prim path. For example, if the input prim path is: ``/World/Table_[0-9]/Bottle``, the decorator will clone the prim at each matching prim path of the parent prim: ``/World/Table_0/Bottle``, ``/World/Table_1/Bottle``, etc. Note: For matching prim paths, the decorator assumes that valid prims exist for all matching prim paths. In case no matching prim paths are found, the decorator raises a ``RuntimeError``. Args: func: The function to decorate. Returns: The decorated function that spawns the prim and clones it at each matching prim path. It returns the spawned source prim, i.e., the first prim in the list of matching prim paths. """ @functools.wraps(func) def wrapper(prim_path: str | Sdf.Path, cfg: SpawnerCfg, *args, **kwargs): # cast prim_path to str type in case its an Sdf.Path prim_path = str(prim_path) # check prim path is global if not prim_path.startswith("/"): raise ValueError(f"Prim path '{prim_path}' is not global. It must start with '/'.") # resolve: {SPAWN_NS}/AssetName # note: this assumes that the spawn namespace already exists in the stage root_path, asset_path = prim_path.rsplit("/", 1) # check if input is a regex expression # note: a valid prim path can only contain alphanumeric characters, underscores, and forward slashes is_regex_expression = re.match(r"^[a-zA-Z0-9/_]+$", root_path) is None # resolve matching prims for source prim path expression if is_regex_expression and root_path != "": source_prim_paths = find_matching_prim_paths(root_path) # if no matching prims are found, raise an error if len(source_prim_paths) == 0: raise RuntimeError( f"Unable to find source prim path: '{root_path}'. Please create the prim before spawning." ) else: source_prim_paths = [root_path] # resolve prim paths for spawning and cloning prim_paths = [f"{source_prim_path}/{asset_path}" for source_prim_path in source_prim_paths] # spawn single instance prim = func(prim_paths[0], cfg, *args, **kwargs) # set the prim visibility if hasattr(cfg, "visible"): imageable = UsdGeom.Imageable(prim) if cfg.visible: imageable.MakeVisible() else: imageable.MakeInvisible() # set the semantic annotations if hasattr(cfg, "semantic_tags") and cfg.semantic_tags is not None: # note: taken from replicator scripts.utils.utils.py for semantic_type, semantic_value in cfg.semantic_tags: # deal with spaces by replacing them with underscores semantic_type_sanitized = semantic_type.replace(" ", "_") semantic_value_sanitized = semantic_value.replace(" ", "_") # set the semantic API for the instance instance_name = f"{semantic_type_sanitized}_{semantic_value_sanitized}" sem = Semantics.SemanticsAPI.Apply(prim, instance_name) # create semantic type and data attributes sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set(semantic_type) sem.GetSemanticDataAttr().Set(semantic_value) # activate rigid body contact sensors if hasattr(cfg, "activate_contact_sensors") and cfg.activate_contact_sensors: schemas.activate_contact_sensors(prim_paths[0], cfg.activate_contact_sensors) # clone asset using cloner API if len(prim_paths) > 1: cloner = Cloner() # clone the prim cloner.clone(prim_paths[0], prim_paths[1:], replicate_physics=False, copy_from_source=cfg.copy_from_source) # return the source prim return prim return wrapper """ Material bindings. """ @apply_nested def bind_visual_material( prim_path: str | Sdf.Path, material_path: str | Sdf.Path, stage: Usd.Stage | None = None, stronger_than_descendants: bool = True, ): """Bind a visual material to a prim. This function is a wrapper around the USD command `BindMaterialCommand`_. .. note:: The function is decorated with :meth:`apply_nested` to allow applying the function to a prim path and all its descendants. .. _BindMaterialCommand: https://docs.omniverse.nvidia.com/kit/docs/omni.usd/latest/omni.usd.commands/omni.usd.commands.BindMaterialCommand.html Args: prim_path: The prim path where to apply the material. material_path: The prim path of the material to apply. stage: The stage where the prim and material exist. Defaults to None, in which case the current stage is used. stronger_than_descendants: Whether the material should override the material of its descendants. Defaults to True. Raises: ValueError: If the provided prim paths do not exist on stage. """ # resolve stage if stage is None: stage = stage_utils.get_current_stage() # check if prim and material exists if not stage.GetPrimAtPath(prim_path).IsValid(): raise ValueError(f"Target prim '{material_path}' does not exist.") if not stage.GetPrimAtPath(material_path).IsValid(): raise ValueError(f"Visual material '{material_path}' does not exist.") # resolve token for weaker than descendants if stronger_than_descendants: binding_strength = "strongerThanDescendants" else: binding_strength = "weakerThanDescendants" # obtain material binding API # note: we prefer using the command here as it is more robust than the USD API success, _ = omni.kit.commands.execute( "BindMaterialCommand", prim_path=prim_path, material_path=material_path, strength=binding_strength, stage=stage, ) # return success return success @apply_nested def bind_physics_material( prim_path: str | Sdf.Path, material_path: str | Sdf.Path, stage: Usd.Stage | None = None, stronger_than_descendants: bool = True, ): """Bind a physics material to a prim. `Physics material`_ can be applied only to a prim with physics-enabled on them. This includes having collision APIs, or deformable body APIs, or being a particle system. In case the prim does not have any of these APIs, the function will not apply the material and return False. .. note:: The function is decorated with :meth:`apply_nested` to allow applying the function to a prim path and all its descendants. .. _Physics material: https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/simulation-control/physics-settings.html#physics-materials Args: prim_path: The prim path where to apply the material. material_path: The prim path of the material to apply. stage: The stage where the prim and material exist. Defaults to None, in which case the current stage is used. stronger_than_descendants: Whether the material should override the material of its descendants. Defaults to True. Raises: ValueError: If the provided prim paths do not exist on stage. """ # resolve stage if stage is None: stage = stage_utils.get_current_stage() # check if prim and material exists if not stage.GetPrimAtPath(prim_path).IsValid(): raise ValueError(f"Target prim '{material_path}' does not exist.") if not stage.GetPrimAtPath(material_path).IsValid(): raise ValueError(f"Physics material '{material_path}' does not exist.") # get USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim has collision applied on it has_physics_scene_api = prim.HasAPI(PhysxSchema.PhysxSceneAPI) has_collider = prim.HasAPI(UsdPhysics.CollisionAPI) has_deformable_body = prim.HasAPI(PhysxSchema.PhysxDeformableBodyAPI) has_particle_system = prim.IsA(PhysxSchema.PhysxParticleSystem) if not (has_physics_scene_api or has_collider or has_deformable_body or has_particle_system): carb.log_verbose( f"Cannot apply physics material '{material_path}' on prim '{prim_path}'. It is neither a" " PhysX scene, collider, a deformable body, nor a particle system." ) return False # obtain material binding API if prim.HasAPI(UsdShade.MaterialBindingAPI): material_binding_api = UsdShade.MaterialBindingAPI(prim) else: material_binding_api = UsdShade.MaterialBindingAPI.Apply(prim) # obtain the material prim material = UsdShade.Material(stage.GetPrimAtPath(material_path)) # resolve token for weaker than descendants if stronger_than_descendants: binding_strength = UsdShade.Tokens.strongerThanDescendants else: binding_strength = UsdShade.Tokens.weakerThanDescendants # apply the material material_binding_api.Bind(material, bindingStrength=binding_strength, materialPurpose="physics") # type: ignore # return success return True """ Exporting. """ def export_prim_to_file( path: str | Sdf.Path, source_prim_path: str | Sdf.Path, target_prim_path: str | Sdf.Path | None = None, stage: Usd.Stage | None = None, ): """Exports a prim from a given stage to a USD file. The function creates a new layer at the provided path and copies the prim to the layer. It sets the copied prim as the default prim in the target layer. Additionally, it updates the stage up-axis and meters-per-unit to match the current stage. Args: path: The filepath path to export the prim to. source_prim_path: The prim path to export. target_prim_path: The prim path to set as the default prim in the target layer. Defaults to None, in which case the source prim path is used. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Raises: ValueError: If the prim paths are not global (i.e: do not start with '/'). """ # automatically casting to str in case args # are path types path = str(path) source_prim_path = str(source_prim_path) if target_prim_path is not None: target_prim_path = str(target_prim_path) if not source_prim_path.startswith("/"): raise ValueError(f"Source prim path '{source_prim_path}' is not global. It must start with '/'.") if target_prim_path is not None and not target_prim_path.startswith("/"): raise ValueError(f"Target prim path '{target_prim_path}' is not global. It must start with '/'.") # get current stage if stage is None: stage: Usd.Stage = omni.usd.get_context().get_stage() # get root layer source_layer = stage.GetRootLayer() # only create a new layer if it doesn't exist already target_layer = Sdf.Find(path) if target_layer is None: target_layer = Sdf.Layer.CreateNew(path) # open the target stage target_stage = Usd.Stage.Open(target_layer) # update stage data UsdGeom.SetStageUpAxis(target_stage, UsdGeom.GetStageUpAxis(stage)) UsdGeom.SetStageMetersPerUnit(target_stage, UsdGeom.GetStageMetersPerUnit(stage)) # specify the prim to copy source_prim_path = Sdf.Path(source_prim_path) if target_prim_path is None: target_prim_path = source_prim_path # copy the prim Sdf.CreatePrimInLayer(target_layer, target_prim_path) Sdf.CopySpec(source_layer, source_prim_path, target_layer, target_prim_path) # set the default prim target_layer.defaultPrim = Sdf.Path(target_prim_path).name # resolve all paths relative to layer path omni.usd.resolve_paths(source_layer.identifier, target_layer.identifier) # save the stage target_layer.Save() """ USD Prim properties. """ def make_uninstanceable(prim_path: str | Sdf.Path, stage: Usd.Stage | None = None): """Check if a prim and its descendants are instanced and make them uninstanceable. This function checks if the prim at the specified prim path and its descendants are instanced. If so, it makes the respective prim uninstanceable by disabling instancing on the prim. This is useful when we want to modify the properties of a prim that is instanced. For example, if we want to apply a different material on an instanced prim, we need to make the prim uninstanceable first. Args: prim_path: The prim path to check. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # make paths str type if they aren't already prim_path = str(prim_path) # check if prim path is global if not prim_path.startswith("/"): raise ValueError(f"Prim path '{prim_path}' is not global. It must start with '/'.") # get current stage if stage is None: stage = stage_utils.get_current_stage() # get prim prim: Usd.Prim = stage.GetPrimAtPath(prim_path) # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim_path}' is not valid.") # iterate over all prims under prim-path all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) # check if prim is instanced if child_prim.IsInstance(): # make the prim uninstanceable child_prim.SetInstanceable(False) # add children to list all_prims += child_prim.GetChildren() """ USD Stage traversal. """ def get_first_matching_child_prim( prim_path: str | Sdf.Path, predicate: Callable[[Usd.Prim], bool], stage: Usd.Stage | None = None ) -> Usd.Prim | None: """Recursively get the first USD Prim at the path string that passes the predicate function Args: prim_path: The path of the prim in the stage. predicate: The function to test the prims against. It takes a prim as input and returns a boolean. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Returns: The first prim on the path that passes the predicate. If no prim passes the predicate, it returns None. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # make paths str type if they aren't already prim_path = str(prim_path) # check if prim path is global if not prim_path.startswith("/"): raise ValueError(f"Prim path '{prim_path}' is not global. It must start with '/'.") # get current stage if stage is None: stage = stage_utils.get_current_stage() # get prim prim = stage.GetPrimAtPath(prim_path) # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim_path}' is not valid.") # iterate over all prims under prim-path all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) # check if prim passes predicate if predicate(child_prim): return child_prim # add children to list all_prims += child_prim.GetChildren() return None def get_all_matching_child_prims( prim_path: str | Sdf.Path, predicate: Callable[[Usd.Prim], bool] = lambda _: True, depth: int | None = None, stage: Usd.Stage | None = None, ) -> list[Usd.Prim]: """Performs a search starting from the root and returns all the prims matching the predicate. Args: prim_path: The root prim path to start the search from. predicate: The predicate that checks if the prim matches the desired criteria. It takes a prim as input and returns a boolean. Defaults to a function that always returns True. depth: The maximum depth for traversal, should be bigger than zero if specified. Defaults to None (i.e: traversal happens till the end of the tree). stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Returns: A list containing all the prims matching the predicate. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # make paths str type if they aren't already prim_path = str(prim_path) # check if prim path is global if not prim_path.startswith("/"): raise ValueError(f"Prim path '{prim_path}' is not global. It must start with '/'.") # get current stage if stage is None: stage = stage_utils.get_current_stage() # get prim prim = stage.GetPrimAtPath(prim_path) # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim at path '{prim_path}' is not valid.") # check if depth is valid if depth is not None and depth <= 0: raise ValueError(f"Depth must be bigger than zero, got {depth}.") # iterate over all prims under prim-path # list of tuples (prim, current_depth) all_prims_queue = [(prim, 0)] output_prims = [] while len(all_prims_queue) > 0: # get current prim child_prim, current_depth = all_prims_queue.pop(0) # check if prim passes predicate if predicate(child_prim): output_prims.append(child_prim) # add children to list if depth is None or current_depth < depth: all_prims_queue += [(child, current_depth + 1) for child in child_prim.GetChildren()] return output_prims def find_first_matching_prim(prim_path_regex: str, stage: Usd.Stage | None = None) -> Usd.Prim | None: """Find the first matching prim in the stage based on input regex expression. Args: prim_path_regex: The regex expression for prim path. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Returns: The first prim that matches input expression. If no prim matches, returns None. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # check prim path is global if not prim_path_regex.startswith("/"): raise ValueError(f"Prim path '{prim_path_regex}' is not global. It must start with '/'.") # get current stage if stage is None: stage = stage_utils.get_current_stage() # need to wrap the token patterns in '^' and '$' to prevent matching anywhere in the string pattern = f"^{prim_path_regex}$" compiled_pattern = re.compile(pattern) # obtain matching prim (depth-first search) for prim in stage.Traverse(): # check if prim passes predicate if compiled_pattern.match(prim.GetPath().pathString) is not None: return prim return None def find_matching_prims(prim_path_regex: str, stage: Usd.Stage | None = None) -> list[Usd.Prim]: """Find all the matching prims in the stage based on input regex expression. Args: prim_path_regex: The regex expression for prim path. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Returns: A list of prims that match input expression. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # check prim path is global if not prim_path_regex.startswith("/"): raise ValueError(f"Prim path '{prim_path_regex}' is not global. It must start with '/'.") # get current stage if stage is None: stage = stage_utils.get_current_stage() # need to wrap the token patterns in '^' and '$' to prevent matching anywhere in the string tokens = prim_path_regex.split("/")[1:] tokens = [f"^{token}$" for token in tokens] # iterate over all prims in stage (breath-first search) all_prims = [stage.GetPseudoRoot()] output_prims = [] for index, token in enumerate(tokens): token_compiled = re.compile(token) for prim in all_prims: for child in prim.GetAllChildren(): if token_compiled.match(child.GetName()) is not None: output_prims.append(child) if index < len(tokens) - 1: all_prims = output_prims output_prims = [] return output_prims def find_matching_prim_paths(prim_path_regex: str, stage: Usd.Stage | None = None) -> list[str]: """Find all the matching prim paths in the stage based on input regex expression. Args: prim_path_regex: The regex expression for prim path. stage: The stage where the prim exists. Defaults to None, in which case the current stage is used. Returns: A list of prim paths that match input expression. Raises: ValueError: If the prim path is not global (i.e: does not start with '/'). """ # obtain matching prims output_prims = find_matching_prims(prim_path_regex, stage) # convert prims to prim paths output_prim_paths = [] for prim in output_prims: output_prim_paths.append(prim.GetPath().pathString) return output_prim_paths
29,548
Python
39.983356
148
0.659266
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/simulation_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Base configuration of the environment. This module defines the general configuration of the environment. It includes parameters for configuring the environment instances, viewer settings, and simulation parameters. """ from __future__ import annotations from typing import Literal from omni.isaac.orbit.utils import configclass from .spawners.materials import RigidBodyMaterialCfg @configclass class PhysxCfg: """Configuration for PhysX solver-related parameters. These parameters are used to configure the PhysX solver. For more information, see the PhysX 5 SDK documentation. PhysX 5 supports GPU-accelerated physics simulation. This is enabled by default, but can be disabled through the flag `use_gpu`. Unlike CPU PhysX, the GPU simulation feature is not able to dynamically grow all the buffers. Therefore, it is necessary to provide a reasonable estimate of the buffer sizes for GPU features. If insufficient buffer sizes are provided, the simulation will fail with errors and lead to adverse behaviors. The buffer sizes can be adjusted through the `gpu_*` parameters. References: * PhysX 5 documentation: https://nvidia-omniverse.github.io/PhysX/ """ use_gpu: bool = True """Enable/disable GPU accelerated dynamics simulation. Default is True. This enables GPU-accelerated implementations for broad-phase collision checks, contact generation, shape and body management, and constrained solver. """ solver_type: Literal[0, 1] = 1 """The type of solver to use.Default is 1 (TGS). Available solvers: * :obj:`0`: PGS (Projective Gauss-Seidel) * :obj:`1`: TGS (Truncated Gauss-Seidel) """ min_position_iteration_count: int = 1 """Minimum number of solver position iterations (rigid bodies, cloth, particles etc.). Default is 1. .. note:: Each physics actor in Omniverse specifies its own solver iteration count. The solver takes the number of iterations specified by the actor with the highest iteration and clamps it to the range ``[min_position_iteration_count, max_position_iteration_count]``. """ max_position_iteration_count: int = 255 """Maximum number of solver position iterations (rigid bodies, cloth, particles etc.). Default is 255. .. note:: Each physics actor in Omniverse specifies its own solver iteration count. The solver takes the number of iterations specified by the actor with the highest iteration and clamps it to the range ``[min_position_iteration_count, max_position_iteration_count]``. """ min_velocity_iteration_count: int = 0 """Minimum number of solver position iterations (rigid bodies, cloth, particles etc.). Default is 0. .. note:: Each physics actor in Omniverse specifies its own solver iteration count. The solver takes the number of iterations specified by the actor with the highest iteration and clamps it to the range ``[min_velocity_iteration_count, max_velocity_iteration_count]``. """ max_velocity_iteration_count: int = 255 """Maximum number of solver position iterations (rigid bodies, cloth, particles etc.). Default is 255. .. note:: Each physics actor in Omniverse specifies its own solver iteration count. The solver takes the number of iterations specified by the actor with the highest iteration and clamps it to the range ``[min_velocity_iteration_count, max_velocity_iteration_count]``. """ enable_ccd: bool = False """Enable a second broad-phase pass that makes it possible to prevent objects from tunneling through each other. Default is False.""" enable_stabilization: bool = True """Enable/disable additional stabilization pass in solver. Default is True.""" enable_enhanced_determinism: bool = False """Enable/disable improved determinism at the expense of performance. Defaults to False. For more information on PhysX determinism, please check `here`_. .. _here: https://nvidia-omniverse.github.io/PhysX/physx/5.3.1/docs/RigidBodyDynamics.html#enhanced-determinism """ bounce_threshold_velocity: float = 0.5 """Relative velocity threshold for contacts to bounce (in m/s). Default is 0.5 m/s.""" friction_offset_threshold: float = 0.04 """Threshold for contact point to experience friction force (in m). Default is 0.04 m.""" friction_correlation_distance: float = 0.025 """Distance threshold for merging contacts into a single friction anchor point (in m). Default is 0.025 m.""" gpu_max_rigid_contact_count: int = 2**23 """Size of rigid contact stream buffer allocated in pinned host memory. Default is 2 ** 23.""" gpu_max_rigid_patch_count: int = 5 * 2**15 """Size of the rigid contact patch stream buffer allocated in pinned host memory. Default is 5 * 2 ** 15.""" gpu_found_lost_pairs_capacity: int = 2**21 """Capacity of found and lost buffers allocated in GPU global memory. Default is 2 ** 21. This is used for the found/lost pair reports in the BP. """ gpu_found_lost_aggregate_pairs_capacity: int = 2**25 """Capacity of found and lost buffers in aggregate system allocated in GPU global memory. Default is 2 ** 25. This is used for the found/lost pair reports in AABB manager. """ gpu_total_aggregate_pairs_capacity: int = 2**21 """Capacity of total number of aggregate pairs allocated in GPU global memory. Default is 2 ** 21.""" gpu_collision_stack_size: int = 2**26 """Size of the collision stack buffer allocated in pinned host memory. Default is 2 ** 26.""" gpu_heap_capacity: int = 2**26 """Initial capacity of the GPU and pinned host memory heaps. Additional memory will be allocated if more memory is required. Default is 2 ** 26.""" gpu_temp_buffer_capacity: int = 2**24 """Capacity of temp buffer allocated in pinned host memory. Default is 2 ** 24.""" gpu_max_num_partitions: int = 8 """Limitation for the partitions in the GPU dynamics pipeline. Default is 8. This variable must be power of 2. A value greater than 32 is currently not supported. Range: (1, 32) """ gpu_max_soft_body_contacts: int = 2**20 """Size of soft body contacts stream buffer allocated in pinned host memory. Default is 2 ** 20.""" gpu_max_particle_contacts: int = 2**20 """Size of particle contacts stream buffer allocated in pinned host memory. Default is 2 ** 20.""" @configclass class SimulationCfg: """Configuration for simulation physics.""" physics_prim_path: str = "/physicsScene" """The prim path where the USD PhysicsScene is created. Default is "/physicsScene".""" dt: float = 1.0 / 60.0 """The physics simulation time-step (in seconds). Default is 0.0167 seconds.""" substeps: int = 1 """The number of physics simulation steps per rendering step. Default is 1.""" gravity: tuple[float, float, float] = (0.0, 0.0, -9.81) """The gravity vector (in m/s^2). Default is (0.0, 0.0, -9.81). If set to (0.0, 0.0, 0.0), gravity is disabled. """ enable_scene_query_support: bool = False """Enable/disable scene query support for collision shapes. Default is False. This flag allows performing collision queries (raycasts, sweeps, and overlaps) on actors and attached shapes in the scene. This is useful for implementing custom collision detection logic outside of the physics engine. If set to False, the physics engine does not create the scene query manager and the scene query functionality will not be available. However, this provides some performance speed-up. Note: This flag is overridden to True inside the :class:`SimulationContext` class when running the simulation with the GUI enabled. This is to allow certain GUI features to work properly. """ use_fabric: bool = True """Enable/disable reading of physics buffers directly. Default is True. When running the simulation, updates in the states in the scene is normally synchronized with USD. This leads to an overhead in reading the data and does not scale well with massive parallelization. This flag allows disabling the synchronization and reading the data directly from the physics buffers. It is recommended to set this flag to :obj:`True` when running the simulation with a large number of primitives in the scene. Note: When enabled, the GUI will not update the physics parameters in real-time. To enable real-time updates, please set this flag to :obj:`False`. """ disable_contact_processing: bool = False """Enable/disable contact processing. Default is False. By default, the physics engine processes all the contacts in the scene. However, reporting this contact information can be expensive due to its combinatorial complexity. This flag allows disabling the contact processing and querying the contacts manually by the user over a limited set of primitives in the scene. .. note:: It is required to set this flag to :obj:`True` when using the TensorAPIs for contact reporting. """ use_gpu_pipeline: bool = True """Enable/disable GPU pipeline. Default is True. If set to False, the physics data will be read as CPU buffers. """ device: str = "cuda:0" """The device for running the simulation/environment. Default is ``"cuda:0"``.""" physx: PhysxCfg = PhysxCfg() """PhysX solver settings. Default is PhysxCfg().""" physics_material: RigidBodyMaterialCfg = RigidBodyMaterialCfg() """Default physics material settings for rigid bodies. Default is RigidBodyMaterialCfg(). The physics engine defaults to this physics material for all the rigid body prims that do not have any physics material specified on them. The material is created at the path: ``{physics_prim_path}/defaultMaterial``. """
10,098
Python
40.389344
116
0.710537
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/simulation_context.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins import enum import numpy as np import sys import traceback import weakref from collections.abc import Iterator from contextlib import contextmanager from typing import Any import carb import omni.isaac.core.utils.stage as stage_utils import omni.physx from omni.isaac.core.simulation_context import SimulationContext as _SimulationContext from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.version import get_version from pxr import Gf, Usd from .simulation_cfg import SimulationCfg from .spawners import DomeLightCfg, GroundPlaneCfg from .utils import bind_physics_material class SimulationContext(_SimulationContext): """A class to control simulation-related events such as physics stepping and rendering. The simulation context helps control various simulation aspects. This includes: * configure the simulator with different settings such as the physics time-step, the number of physics substeps, and the physics solver parameters (for more information, see :class:`omni.isaac.orbit.sim.SimulationCfg`) * playing, pausing, stepping and stopping the simulation * adding and removing callbacks to different simulation events such as physics stepping, rendering, etc. This class inherits from the `omni.isaac.core.simulation_context.SimulationContext`_ class and adds additional functionalities such as setting up the simulation context with a configuration object, exposing other commonly used simulator-related functions, and performing version checks of Isaac Sim to ensure compatibility between releases. The simulation context is a singleton object. This means that there can only be one instance of the simulation context at any given time. This is enforced by the parent class. Therefore, it is not possible to create multiple instances of the simulation context. Instead, the simulation context can be accessed using the ``instance()`` method. .. attention:: Since we only support the ``torch <https://pytorch.org/>``_ backend for simulation, the simulation context is configured to use the ``torch`` backend by default. This means that all the data structures used in the simulation are ``torch.Tensor`` objects. The simulation context can be used in two different modes of operations: 1. **Standalone python script**: In this mode, the user has full control over the simulation and can trigger stepping events synchronously (i.e. as a blocking call). In this case the user has to manually call :meth:`step` step the physics simulation and :meth:`render` to render the scene. 2. **Omniverse extension**: In this mode, the user has limited control over the simulation stepping and all the simulation events are triggered asynchronously (i.e. as a non-blocking call). In this case, the user can only trigger the simulation to start, pause, and stop. The simulation takes care of stepping the physics simulation and rendering the scene. Based on above, for most functions in this class there is an equivalent function that is suffixed with ``_async``. The ``_async`` functions are used in the Omniverse extension mode and the non-``_async`` functions are used in the standalone python script mode. .. _omni.isaac.core.simulation_context.SimulationContext: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#module-omni.isaac.core.simulation_context """ class RenderMode(enum.IntEnum): """Different rendering modes for the simulation. Render modes correspond to how the viewport and other UI elements (such as listeners to keyboard or mouse events) are updated. There are three main components that can be updated when the simulation is rendered: 1. **UI elements and other extensions**: These are UI elements (such as buttons, sliders, etc.) and other extensions that are running in the background that need to be updated when the simulation is running. 2. **Cameras**: These are typically based on Hydra textures and are used to render the scene from different viewpoints. They can be attached to a viewport or be used independently to render the scene. 3. **Viewports**: These are windows where you can see the rendered scene. Updating each of the above components has a different overhead. For example, updating the viewports is computationally expensive compared to updating the UI elements. Therefore, it is useful to be able to control what is updated when the simulation is rendered. This is where the render mode comes in. There are four different render modes: * :attr:`NO_GUI_OR_RENDERING`: The simulation is running without a GUI and off-screen rendering flag is disabled, so none of the above are updated. * :attr:`NO_RENDERING`: No rendering, where only 1 is updated at a lower rate. * :attr:`PARTIAL_RENDERING`: Partial rendering, where only 1 and 2 are updated. * :attr:`FULL_RENDERING`: Full rendering, where everything (1, 2, 3) is updated. .. _Viewports: https://docs.omniverse.nvidia.com/extensions/latest/ext_viewport.html """ NO_GUI_OR_RENDERING = -1 """The simulation is running without a GUI and off-screen rendering is disabled.""" NO_RENDERING = 0 """No rendering, where only other UI elements are updated at a lower rate.""" PARTIAL_RENDERING = 1 """Partial rendering, where the simulation cameras and UI elements are updated.""" FULL_RENDERING = 2 """Full rendering, where all the simulation viewports, cameras and UI elements are updated.""" def __init__(self, cfg: SimulationCfg | None = None): """Creates a simulation context to control the simulator. Args: cfg: The configuration of the simulation. Defaults to None, in which case the default configuration is used. """ # store input if cfg is None: cfg = SimulationCfg() self.cfg = cfg # check that simulation is running if stage_utils.get_current_stage() is None: raise RuntimeError("The stage has not been created. Did you run the simulator?") # set flags for simulator # acquire settings interface carb_settings_iface = carb.settings.get_settings() # enable hydra scene-graph instancing # note: this allows rendering of instanceable assets on the GUI carb_settings_iface.set_bool("/persistent/omnihydra/useSceneGraphInstancing", True) # change dispatcher to use the default dispatcher in PhysX SDK instead of carb tasking # note: dispatcher handles how threads are launched for multi-threaded physics carb_settings_iface.set_bool("/physics/physxDispatcher", True) # disable contact processing in omni.physx if requested # note: helpful when creating contact reporting over limited number of objects in the scene if self.cfg.disable_contact_processing: carb_settings_iface.set_bool("/physics/disableContactProcessing", True) # enable custom geometry for cylinder and cone collision shapes to allow contact reporting for them # reason: cylinders and cones aren't natively supported by PhysX so we need to use custom geometry flags # reference: https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/Geometry.html?highlight=capsule#geometry carb_settings_iface.set_bool("/physics/collisionConeCustomGeometry", False) carb_settings_iface.set_bool("/physics/collisionCylinderCustomGeometry", False) # note: we read this once since it is not expected to change during runtime # read flag for whether a local GUI is enabled self._local_gui = carb_settings_iface.get("/app/window/enabled") # read flag for whether livestreaming GUI is enabled self._livestream_gui = carb_settings_iface.get("/app/livestream/enabled") # read flag for whether the orbit viewport capture pipeline will be used, # casting None to False if the flag doesn't exist # this flag is set from the AppLauncher class self._offscreen_render = bool(carb_settings_iface.get("/orbit/offscreen_render/enabled")) # flag for whether any GUI will be rendered (local, livestreamed or viewport) self._has_gui = self._local_gui or self._livestream_gui # store the default render mode if not self._has_gui and not self._offscreen_render: # set default render mode # note: this is the terminal state: cannot exit from this render mode self.render_mode = self.RenderMode.NO_GUI_OR_RENDERING # set viewport context to None self._viewport_context = None self._viewport_window = None elif not self._has_gui and self._offscreen_render: # set default render mode # note: this is the terminal state: cannot exit from this render mode self.render_mode = self.RenderMode.PARTIAL_RENDERING # set viewport context to None self._viewport_context = None self._viewport_window = None else: # note: need to import here in case the UI is not available (ex. headless mode) import omni.ui as ui from omni.kit.viewport.utility import get_active_viewport # set default render mode # note: this can be changed by calling the `set_render_mode` function self.render_mode = self.RenderMode.FULL_RENDERING # acquire viewport context self._viewport_context = get_active_viewport() self._viewport_context.updates_enabled = True # pyright: ignore [reportOptionalMemberAccess] # acquire viewport window # TODO @mayank: Why not just use get_active_viewport_and_window() directly? self._viewport_window = ui.Workspace.get_window("Viewport") # counter for periodic rendering self._render_throttle_counter = 0 # rendering frequency in terms of number of render calls self._render_throttle_period = 5 # override enable scene querying if rendering is enabled # this is needed for some GUI features if self._has_gui: self.cfg.enable_scene_query_support = True # set up flatcache/fabric interface (default is None) # this is needed to flush the flatcache data into Hydra manually when calling `render()` # ref: https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html # note: need to do this here because super().__init__ calls render and this variable is needed self._fabric_iface = None # read isaac sim version (this includes build tag, release tag etc.) # note: we do it once here because it reads the VERSION file from disk and is not expected to change. self._isaacsim_version = get_version() # add callback to deal the simulation app when simulation is stopped. # this is needed because physics views go invalid once we stop the simulation if not builtins.ISAAC_LAUNCHED_FROM_TERMINAL: timeline_event_stream = omni.timeline.get_timeline_interface().get_timeline_event_stream() self._app_control_on_stop_handle = timeline_event_stream.create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.STOP), lambda *args, obj=weakref.proxy(self): obj._app_control_on_stop_callback(*args), order=15, ) else: self._app_control_on_stop_handle = None # flatten out the simulation dictionary sim_params = self.cfg.to_dict() if sim_params is not None: if "physx" in sim_params: physx_params = sim_params.pop("physx") sim_params.update(physx_params) # create a simulation context to control the simulator super().__init__( stage_units_in_meters=1.0, physics_dt=self.cfg.dt, rendering_dt=self.cfg.dt * self.cfg.substeps, backend="torch", sim_params=sim_params, physics_prim_path=self.cfg.physics_prim_path, device=self.cfg.device, ) """ Operations - New. """ def has_gui(self) -> bool: """Returns whether the simulation has a GUI enabled. True if the simulation has a GUI enabled either locally or live-streamed. """ return self._has_gui def is_fabric_enabled(self) -> bool: """Returns whether the fabric interface is enabled. When fabric interface is enabled, USD read/write operations are disabled. Instead all applications read and write the simulation state directly from the fabric interface. This reduces a lot of overhead that occurs during USD read/write operations. For more information, please check `Fabric documentation`_. .. _Fabric documentation: https://docs.omniverse.nvidia.com/kit/docs/usdrt/latest/docs/usd_fabric_usdrt.html """ return self._fabric_iface is not None def get_version(self) -> tuple[int, int, int]: """Returns the version of the simulator. This is a wrapper around the ``omni.isaac.version.get_version()`` function. The returned tuple contains the following information: * Major version (int): This is the year of the release (e.g. 2022). * Minor version (int): This is the half-year of the release (e.g. 1 or 2). * Patch version (int): This is the patch number of the release (e.g. 0). """ return int(self._isaacsim_version[2]), int(self._isaacsim_version[3]), int(self._isaacsim_version[4]) """ Operations - New utilities. """ @staticmethod def set_camera_view( eye: tuple[float, float, float], target: tuple[float, float, float], camera_prim_path: str = "/OmniverseKit_Persp", ): """Set the location and target of the viewport camera in the stage. Note: This is a wrapper around the :math:`omni.isaac.core.utils.viewports.set_camera_view` function. It is provided here for convenience to reduce the amount of imports needed. Args: eye: The location of the camera eye. target: The location of the camera target. camera_prim_path: The path to the camera primitive in the stage. Defaults to "/OmniverseKit_Persp". """ set_camera_view(eye, target, camera_prim_path) def set_render_mode(self, mode: RenderMode): """Change the current render mode of the simulation. Please see :class:`RenderMode` for more information on the different render modes. .. note:: When no GUI is available (locally or livestreamed), we do not need to choose whether the viewport needs to render or not (since there is no GUI). Thus, in this case, calling the function will not change the render mode. Args: mode (RenderMode): The rendering mode. If different than SimulationContext's rendering mode, SimulationContext's mode is changed to the new mode. Raises: ValueError: If the input mode is not supported. """ # check if mode change is possible -- not possible when no GUI is available if not self._has_gui: carb.log_warn( f"Cannot change render mode when GUI is disabled. Using the default render mode: {self.render_mode}." ) return # check if there is a mode change # note: this is mostly needed for GUI when we want to switch between full rendering and no rendering. if mode != self.render_mode: if mode == self.RenderMode.FULL_RENDERING: # display the viewport and enable updates self._viewport_context.updates_enabled = True # pyright: ignore [reportOptionalMemberAccess] self._viewport_window.visible = True # pyright: ignore [reportOptionalMemberAccess] elif mode == self.RenderMode.PARTIAL_RENDERING: # hide the viewport and disable updates self._viewport_context.updates_enabled = False # pyright: ignore [reportOptionalMemberAccess] self._viewport_window.visible = False # pyright: ignore [reportOptionalMemberAccess] elif mode == self.RenderMode.NO_RENDERING: # hide the viewport and disable updates if self._viewport_context is not None: self._viewport_context.updates_enabled = False # pyright: ignore [reportOptionalMemberAccess] self._viewport_window.visible = False # pyright: ignore [reportOptionalMemberAccess] # reset the throttle counter self._render_throttle_counter = 0 else: raise ValueError(f"Unsupported render mode: {mode}! Please check `RenderMode` for details.") # update render mode self.render_mode = mode def set_setting(self, name: str, value: Any): """Set simulation settings using the Carbonite SDK. .. note:: If the input setting name does not exist, it will be created. If it does exist, the value will be overwritten. Please make sure to use the correct setting name. To understand the settings interface, please refer to the `Carbonite SDK <https://docs.omniverse.nvidia.com/dev-guide/latest/programmer_ref/settings.html>`_ documentation. Args: name: The name of the setting. value: The value of the setting. """ self._settings.set(name, value) def get_setting(self, name: str) -> Any: """Read the simulation setting using the Carbonite SDK. Args: name: The name of the setting. Returns: The value of the setting. """ return self._settings.get(name) """ Operations - Override (standalone) """ def reset(self, soft: bool = False): super().reset(soft=soft) # perform additional rendering steps to warm up replicator buffers # this is only needed for the first time we set the simulation if not soft: for _ in range(2): self.render() def step(self, render: bool = True): """Steps the physics simulation with the pre-defined time-step. .. note:: This function blocks if the timeline is paused. It only returns when the timeline is playing. Args: render: Whether to render the scene after stepping the physics simulation. If set to False, the scene is not rendered and only the physics simulation is stepped. """ # check if the simulation timeline is paused. in that case keep stepping until it is playing if not self.is_playing(): # step the simulator (but not the physics) to have UI still active while not self.is_playing(): self.render() # meantime if someone stops, break out of the loop if self.is_stopped(): break # need to do one step to refresh the app # reason: physics has to parse the scene again and inform other extensions like hydra-delegate. # without this the app becomes unresponsive. # FIXME: This steps physics as well, which we is not good in general. self.app.update() # step the simulation super().step(render=render) def render(self, mode: RenderMode | None = None): """Refreshes the rendering components including UI elements and view-ports depending on the render mode. This function is used to refresh the rendering components of the simulation. This includes updating the view-ports, UI elements, and other extensions (besides physics simulation) that are running in the background. The rendering components are refreshed based on the render mode. Please see :class:`RenderMode` for more information on the different render modes. Args: mode: The rendering mode. Defaults to None, in which case the current rendering mode is used. """ # check if we need to change the render mode if mode is not None: self.set_render_mode(mode) # render based on the render mode if self.render_mode == self.RenderMode.NO_GUI_OR_RENDERING: # we never want to render anything here (this is for complete headless mode) pass elif self.render_mode == self.RenderMode.NO_RENDERING: # throttle the rendering frequency to keep the UI responsive self._render_throttle_counter += 1 if self._render_throttle_counter % self._render_throttle_period == 0: self._render_throttle_counter = 0 # here we don't render viewport so don't need to flush fabric data # note: we don't call super().render() anymore because they do flush the fabric data self.set_setting("/app/player/playSimulations", False) self._app.update() self.set_setting("/app/player/playSimulations", True) else: # manually flush the fabric data to update Hydra textures if self._fabric_iface is not None: self._fabric_iface.update(0.0, 0.0) # render the simulation # note: we don't call super().render() anymore because they do above operation inside # and we don't want to do it twice. We may remove it once we drop support for Isaac Sim 2022.2. self.set_setting("/app/player/playSimulations", False) self._app.update() self.set_setting("/app/player/playSimulations", True) """ Operations - Override (extension) """ async def reset_async(self, soft: bool = False): # need to load all "physics" information from the USD file if not soft: omni.physx.acquire_physx_interface().force_load_physics_from_usd() # play the simulation await super().reset_async(soft=soft) """ Initialization/Destruction - Override. """ def _init_stage(self, *args, **kwargs) -> Usd.Stage: _ = super()._init_stage(*args, **kwargs) # set additional physx parameters and bind material self._set_additional_physx_params() # load flatcache/fabric interface self._load_fabric_interface() # return the stage return self.stage async def _initialize_stage_async(self, *args, **kwargs) -> Usd.Stage: await super()._initialize_stage_async(*args, **kwargs) # set additional physx parameters and bind material self._set_additional_physx_params() # load flatcache/fabric interface self._load_fabric_interface() # return the stage return self.stage @classmethod def clear_instance(cls): # clear the callback if cls._instance is not None: if cls._instance._app_control_on_stop_handle is not None: cls._instance._app_control_on_stop_handle.unsubscribe() cls._instance._app_control_on_stop_handle = None # call parent to clear the instance super().clear_instance() """ Helper Functions """ def _set_additional_physx_params(self): """Sets additional PhysX parameters that are not directly supported by the parent class.""" # obtain the physics scene api physics_scene = self._physics_context._physics_scene # pyright: ignore [reportPrivateUsage] physx_scene_api = self._physics_context._physx_scene_api # pyright: ignore [reportPrivateUsage] # assert that scene api is not None if physx_scene_api is None: raise RuntimeError("Physics scene API is None! Please create the scene first.") # set parameters not directly supported by the constructor # -- Continuous Collision Detection (CCD) # ref: https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/AdvancedCollisionDetection.html?highlight=ccd#continuous-collision-detection self._physics_context.enable_ccd(self.cfg.physx.enable_ccd) # -- GPU collision stack size physx_scene_api.CreateGpuCollisionStackSizeAttr(self.cfg.physx.gpu_collision_stack_size) # -- Improved determinism by PhysX physx_scene_api.CreateEnableEnhancedDeterminismAttr(self.cfg.physx.enable_enhanced_determinism) # -- Gravity # note: Isaac sim only takes the "up-axis" as the gravity direction. But physics allows any direction so we # need to convert the gravity vector to a direction and magnitude pair explicitly. gravity = np.asarray(self.cfg.gravity) gravity_magnitude = np.linalg.norm(gravity) # Avoid division by zero if gravity_magnitude != 0.0: gravity_direction = gravity / gravity_magnitude else: gravity_direction = gravity physics_scene.CreateGravityDirectionAttr(Gf.Vec3f(*gravity_direction)) physics_scene.CreateGravityMagnitudeAttr(gravity_magnitude) # position iteration count physx_scene_api.CreateMinPositionIterationCountAttr(self.cfg.physx.min_position_iteration_count) physx_scene_api.CreateMaxPositionIterationCountAttr(self.cfg.physx.max_position_iteration_count) # velocity iteration count physx_scene_api.CreateMinVelocityIterationCountAttr(self.cfg.physx.min_velocity_iteration_count) physx_scene_api.CreateMaxVelocityIterationCountAttr(self.cfg.physx.max_velocity_iteration_count) # create the default physics material # this material is used when no material is specified for a primitive # check: https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/simulation-control/physics-settings.html#physics-materials material_path = f"{self.cfg.physics_prim_path}/defaultMaterial" self.cfg.physics_material.func(material_path, self.cfg.physics_material) # bind the physics material to the scene bind_physics_material(self.cfg.physics_prim_path, material_path) def _load_fabric_interface(self): """Loads the fabric interface if enabled.""" if self.cfg.use_fabric: from omni.physxfabric import get_physx_fabric_interface # acquire fabric interface self._fabric_iface = get_physx_fabric_interface() """ Callbacks. """ def _app_control_on_stop_callback(self, event: carb.events.IEvent): """Callback to deal with the app when the simulation is stopped. Once the simulation is stopped, the physics handles go invalid. After that, it is not possible to resume the simulation from the last state. This leaves the app in an inconsistent state, where two possible actions can be taken: 1. **Keep the app rendering**: In this case, the simulation is kept running and the app is not shutdown. However, the physics is not updated and the script cannot be resumed from the last state. The user has to manually close the app to stop the simulation. 2. **Shutdown the app**: This is the default behavior. In this case, the app is shutdown and the simulation is stopped. Note: This callback is used only when running the simulation in a standalone python script. In an extension, it is expected that the user handles the extension shutdown. """ # check if the simulation is stopped if event.type == int(omni.timeline.TimelineEventType.STOP): # keep running the simulator when configured to not shutdown the app if self._has_gui and sys.exc_info()[0] is None: self.app.print_and_log( "Simulation is stopped. The app will keep running with physics disabled." " Press Ctrl+C or close the window to exit the app." ) while self.app.is_running(): self.render() # make sure that any replicator workflows finish rendering/writing if not builtins.ISAAC_LAUNCHED_FROM_TERMINAL: try: import omni.replicator.core as rep rep_status = rep.orchestrator.get_status() if rep_status not in [rep.orchestrator.Status.STOPPED, rep.orchestrator.Status.STOPPING]: rep.orchestrator.stop() if rep_status != rep.orchestrator.Status.STOPPED: rep.orchestrator.wait_until_complete() except Exception: pass # clear the instance and all callbacks # note: clearing callbacks is important to prevent memory leaks self.clear_all_callbacks() # workaround for exit issues, clean the stage first: if omni.usd.get_context().can_close_stage(): omni.usd.get_context().close_stage() # print logging information self.app.print_and_log("Simulation is stopped. Shutting down the app.") # shutdown the simulator self.app.shutdown() # disabled on linux to avoid a crash carb.get_framework().unload_all_plugins() @contextmanager def build_simulation_context( create_new_stage: bool = True, gravity_enabled: bool = True, device: str = "cuda:0", dt: float = 0.01, sim_cfg: SimulationCfg | None = None, add_ground_plane: bool = False, add_lighting: bool = False, auto_add_lighting: bool = False, ) -> Iterator[SimulationContext]: """Context manager to build a simulation context with the provided settings. This function facilitates the creation of a simulation context and provides flexibility in configuring various aspects of the simulation, such as time step, gravity, device, and scene elements like ground plane and lighting. If :attr:`sim_cfg` is None, then an instance of :class:`SimulationCfg` is created with default settings, with parameters overwritten based on arguments to the function. An example usage of the context manager function: .. code-block:: python with build_simulation_context() as sim: # Design the scene # Play the simulation sim.reset() while sim.is_playing(): sim.step() Args: create_new_stage: Whether to create a new stage. Defaults to True. gravity_enabled: Whether to enable gravity in the simulation. Defaults to True. device: Device to run the simulation on. Defaults to "cuda:0". dt: Time step for the simulation: Defaults to 0.01. sim_cfg: :class:`omni.isaac.orbit.sim.SimulationCfg` to use for the simulation. Defaults to None. add_ground_plane: Whether to add a ground plane to the simulation. Defaults to False. add_lighting: Whether to add a dome light to the simulation. Defaults to False. auto_add_lighting: Whether to automatically add a dome light to the simulation if the simulation has a GUI. Defaults to False. This is useful for debugging tests in the GUI. Yields: The simulation context to use for the simulation. """ try: if create_new_stage: stage_utils.create_new_stage() if sim_cfg is None: # Construct one and overwrite the dt, gravity, and device sim_cfg = SimulationCfg(dt=dt) # Set up gravity if gravity_enabled: sim_cfg.gravity = (0.0, 0.0, -9.81) else: sim_cfg.gravity = (0.0, 0.0, 0.0) # Set device sim_cfg.device = device # Construct simulation context sim = SimulationContext(sim_cfg) if add_ground_plane: # Ground-plane cfg = GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) if add_lighting or (auto_add_lighting and sim.has_gui()): # Lighting cfg = DomeLightCfg( color=(0.1, 0.1, 0.1), enable_color_temperature=True, color_temperature=5500, intensity=10000, ) # Dome light named specifically to avoid conflicts cfg.func(prim_path="/World/defaultDomeLight", cfg=cfg, translation=(0.0, 0.0, 10.0)) yield sim except Exception: carb.log_error(traceback.format_exc()) raise finally: if not sim.has_gui(): # Stop simulation only if we aren't rendering otherwise the app will hang indefinitely sim.stop() # Clear the stage sim.clear_all_callbacks() sim.clear_instance()
33,577
Python
47.106017
199
0.653751
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/schemas/schemas_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import Literal from omni.isaac.orbit.utils import configclass @configclass class ArticulationRootPropertiesCfg: """Properties to apply to the root of an articulation. See :meth:`modify_articulation_root_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ articulation_enabled: bool | None = None """Whether to enable or disable articulation.""" enabled_self_collisions: bool | None = None """Whether to enable or disable self-collisions.""" solver_position_iteration_count: int | None = None """Solver position iteration counts for the body.""" solver_velocity_iteration_count: int | None = None """Solver position iteration counts for the body.""" sleep_threshold: float | None = None """Mass-normalized kinetic energy threshold below which an actor may go to sleep.""" stabilization_threshold: float | None = None """The mass-normalized kinetic energy threshold below which an articulation may participate in stabilization.""" @configclass class RigidBodyPropertiesCfg: """Properties to apply to a rigid body. See :meth:`modify_rigid_body_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ rigid_body_enabled: bool | None = None """Whether to enable or disable the rigid body.""" kinematic_enabled: bool | None = None """Determines whether the body is kinematic or not. A kinematic body is a body that is moved through animated poses or through user defined poses. The simulation still derives velocities for the kinematic body based on the external motion. For more information on kinematic bodies, please refer to the `documentation <https://openusd.org/release/wp_rigid_body_physics.html#kinematic-bodies>`_. """ disable_gravity: bool | None = None """Disable gravity for the actor.""" linear_damping: float | None = None """Linear damping for the body.""" angular_damping: float | None = None """Angular damping for the body.""" max_linear_velocity: float | None = None """Maximum linear velocity for rigid bodies (in m/s).""" max_angular_velocity: float | None = None """Maximum angular velocity for rigid bodies (in rad/s).""" max_depenetration_velocity: float | None = None """Maximum depenetration velocity permitted to be introduced by the solver (in m/s).""" max_contact_impulse: float | None = None """The limit on the impulse that may be applied at a contact.""" enable_gyroscopic_forces: bool | None = None """Enables computation of gyroscopic forces on the rigid body.""" retain_accelerations: bool | None = None """Carries over forces/accelerations over sub-steps.""" solver_position_iteration_count: int | None = None """Solver position iteration counts for the body.""" solver_velocity_iteration_count: int | None = None """Solver position iteration counts for the body.""" sleep_threshold: float | None = None """Mass-normalized kinetic energy threshold below which an actor may go to sleep.""" stabilization_threshold: float | None = None """The mass-normalized kinetic energy threshold below which an actor may participate in stabilization.""" @configclass class CollisionPropertiesCfg: """Properties to apply to colliders in a rigid body. See :meth:`modify_collision_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ collision_enabled: bool | None = None """Whether to enable or disable collisions.""" contact_offset: float | None = None """Contact offset for the collision shape (in m). The collision detector generates contact points as soon as two shapes get closer than the sum of their contact offsets. This quantity should be non-negative which means that contact generation can potentially start before the shapes actually penetrate. """ rest_offset: float | None = None """Rest offset for the collision shape (in m). The rest offset quantifies how close a shape gets to others at rest, At rest, the distance between two vertically stacked objects is the sum of their rest offsets. If a pair of shapes have a positive rest offset, the shapes will be separated at rest by an air gap. """ torsional_patch_radius: float | None = None """Radius of the contact patch for applying torsional friction (in m). It is used to approximate rotational friction introduced by the compression of contacting surfaces. If the radius is zero, no torsional friction is applied. """ min_torsional_patch_radius: float | None = None """Minimum radius of the contact patch for applying torsional friction (in m).""" @configclass class MassPropertiesCfg: """Properties to define explicit mass properties of a rigid body. See :meth:`modify_mass_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ mass: float | None = None """The mass of the rigid body (in kg). Note: If non-zero, the mass is ignored and the density is used to compute the mass. """ density: float | None = None """The density of the rigid body (in kg/m^3). The density indirectly defines the mass of the rigid body. It is generally computed using the collision approximation of the body. """ @configclass class JointDrivePropertiesCfg: """Properties to define the drive mechanism of a joint. See :meth:`modify_joint_drive_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ drive_type: Literal["force", "acceleration"] | None = None """Joint drive type to apply. If the drive type is "force", then the joint is driven by a force. If the drive type is "acceleration", then the joint is driven by an acceleration (usually used for kinematic joints). """ @configclass class FixedTendonPropertiesCfg: """Properties to define fixed tendons of an articulation. See :meth:`modify_fixed_tendon_properties` for more information. .. note:: If the values are None, they are not modified. This is useful when you want to set only a subset of the properties and leave the rest as-is. """ tendon_enabled: bool | None = None """Whether to enable or disable the tendon.""" stiffness: float | None = None """Spring stiffness term acting on the tendon's length.""" damping: float | None = None """The damping term acting on both the tendon length and the tendon-length limits.""" limit_stiffness: float | None = None """Limit stiffness term acting on the tendon's length limits.""" offset: float | None = None """Length offset term for the tendon. It defines an amount to be added to the accumulated length computed for the tendon. This allows the application to actuate the tendon by shortening or lengthening it. """ rest_length: float | None = None """Spring rest length of the tendon."""
7,830
Python
39.158974
157
0.698595
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/schemas/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing utilities for schemas used in Omniverse. We wrap the USD schemas for PhysX and USD Physics in a more convenient API for setting the parameters from Python. This is done so that configuration objects can define the schema properties to set and make it easier to tune the physics parameters without requiring to open Omniverse Kit and manually set the parameters into the respective USD attributes. .. caution:: Schema properties cannot be applied on prims that are prototypes as they are read-only prims. This particularly affects instanced assets where some of the prims (usually the visual and collision meshes) are prototypes so that the instancing can be done efficiently. In such cases, it is assumed that the prototypes have sim-ready properties on them that don't need to be modified. Trying to set properties into prototypes will throw a warning saying that the prim is a prototype and the properties cannot be set. The schemas are defined in the following links: * `UsdPhysics schema <https://openusd.org/dev/api/usd_physics_page_front.html>`_ * `PhysxSchema schema <https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/index.html>`_ Locally, the schemas are defined in the following files: * ``_isaac_sim/kit/extsPhysics/omni.usd.schema.physics/plugins/UsdPhysics/resources/UsdPhysics/schema.usda`` * ``_isaac_sim/kit/extsPhysics/omni.usd.schema.physx/plugins/PhysxSchema/resources/PhysxSchema/schema.usda`` """ from .schemas import ( activate_contact_sensors, define_articulation_root_properties, define_collision_properties, define_mass_properties, define_rigid_body_properties, modify_articulation_root_properties, modify_collision_properties, modify_fixed_tendon_properties, modify_joint_drive_properties, modify_mass_properties, modify_rigid_body_properties, ) from .schemas_cfg import ( ArticulationRootPropertiesCfg, CollisionPropertiesCfg, FixedTendonPropertiesCfg, JointDrivePropertiesCfg, MassPropertiesCfg, RigidBodyPropertiesCfg, )
2,223
Python
38.714285
118
0.774629
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/schemas/schemas.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import carb import omni.isaac.core.utils.stage as stage_utils from pxr import PhysxSchema, Usd, UsdPhysics from ..utils import apply_nested, safe_set_attribute_on_usd_schema from . import schemas_cfg """ Articulation root properties. """ def define_articulation_root_properties( prim_path: str, cfg: schemas_cfg.ArticulationRootPropertiesCfg, stage: Usd.Stage | None = None ): """Apply the articulation root schema on the input prim and set its properties. See :func:`modify_articulation_root_properties` for more details on how the properties are set. Args: prim_path: The prim path where to apply the articulation root schema. cfg: The configuration for the articulation root. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Raises: ValueError: When the prim path is not valid. TypeError: When the prim already has conflicting API schemas. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get articulation USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim path is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # check if prim has articulation applied on it if not UsdPhysics.ArticulationRootAPI(prim): UsdPhysics.ArticulationRootAPI.Apply(prim) # set articulation root properties modify_articulation_root_properties(prim_path, cfg, stage) @apply_nested def modify_articulation_root_properties( prim_path: str, cfg: schemas_cfg.ArticulationRootPropertiesCfg, stage: Usd.Stage | None = None ) -> bool: """Modify PhysX parameters for an articulation root prim. The `articulation root`_ marks the root of an articulation tree. For floating articulations, this should be on the root body. For fixed articulations, this API can be on a direct or indirect parent of the root joint which is fixed to the world. The schema comprises of attributes that belong to the `ArticulationRootAPI`_ and `PhysxArticulationAPI`_. schemas. The latter contains the PhysX parameters for the articulation root. The properties are applied to the articulation root prim. The common properties (such as solver position and velocity iteration counts, sleep threshold, stabilization threshold) take precedence over those specified in the rigid body schemas for all the rigid bodies in the articulation. .. note:: This function is decorated with :func:`apply_nested` that set the properties to all the prims (that have the schema applied on them) under the input prim path. .. _articulation root: https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/Articulations.html .. _ArticulationRootAPI: https://openusd.org/dev/api/class_usd_physics_articulation_root_a_p_i.html .. _PhysxArticulationAPI: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_articulation_a_p_i.html Args: prim_path: The prim path to the articulation root. cfg: The configuration for the articulation root. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get articulation USD prim articulation_prim = stage.GetPrimAtPath(prim_path) # check if prim has articulation applied on it if not UsdPhysics.ArticulationRootAPI(articulation_prim): return False # retrieve the articulation api physx_articulation_api = PhysxSchema.PhysxArticulationAPI(articulation_prim) if not physx_articulation_api: physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Apply(articulation_prim) # convert to dict cfg = cfg.to_dict() # set into physx api for attr_name, value in cfg.items(): safe_set_attribute_on_usd_schema(physx_articulation_api, attr_name, value, camel_case=True) # success return True """ Rigid body properties. """ def define_rigid_body_properties( prim_path: str, cfg: schemas_cfg.RigidBodyPropertiesCfg, stage: Usd.Stage | None = None ): """Apply the rigid body schema on the input prim and set its properties. See :func:`modify_rigid_body_properties` for more details on how the properties are set. Args: prim_path: The prim path where to apply the rigid body schema. cfg: The configuration for the rigid body. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Raises: ValueError: When the prim path is not valid. TypeError: When the prim already has conflicting API schemas. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim path is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # check if prim has rigid body applied on it if not UsdPhysics.RigidBodyAPI(prim): UsdPhysics.RigidBodyAPI.Apply(prim) # set rigid body properties modify_rigid_body_properties(prim_path, cfg, stage) @apply_nested def modify_rigid_body_properties( prim_path: str, cfg: schemas_cfg.RigidBodyPropertiesCfg, stage: Usd.Stage | None = None ) -> bool: """Modify PhysX parameters for a rigid body prim. A `rigid body`_ is a single body that can be simulated by PhysX. It can be either dynamic or kinematic. A dynamic body responds to forces and collisions. A `kinematic body`_ can be moved by the user, but does not respond to forces. They are similar to having static bodies that can be moved around. The schema comprises of attributes that belong to the `RigidBodyAPI`_ and `PhysxRigidBodyAPI`_. schemas. The latter contains the PhysX parameters for the rigid body. .. note:: This function is decorated with :func:`apply_nested` that sets the properties to all the prims (that have the schema applied on them) under the input prim path. .. _rigid body: https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/RigidBodyOverview.html .. _kinematic body: https://openusd.org/release/wp_rigid_body_physics.html#kinematic-bodies .. _RigidBodyAPI: https://openusd.org/dev/api/class_usd_physics_rigid_body_a_p_i.html .. _PhysxRigidBodyAPI: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_rigid_body_a_p_i.html Args: prim_path: The prim path to the rigid body. cfg: The configuration for the rigid body. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get rigid-body USD prim rigid_body_prim = stage.GetPrimAtPath(prim_path) # check if prim has rigid-body applied on it if not UsdPhysics.RigidBodyAPI(rigid_body_prim): return False # retrieve the USD rigid-body api usd_rigid_body_api = UsdPhysics.RigidBodyAPI(rigid_body_prim) # retrieve the physx rigid-body api physx_rigid_body_api = PhysxSchema.PhysxRigidBodyAPI(rigid_body_prim) if not physx_rigid_body_api: physx_rigid_body_api = PhysxSchema.PhysxRigidBodyAPI.Apply(rigid_body_prim) # convert to dict cfg = cfg.to_dict() # set into USD API for attr_name in ["rigid_body_enabled", "kinematic_enabled"]: value = cfg.pop(attr_name, None) safe_set_attribute_on_usd_schema(usd_rigid_body_api, attr_name, value, camel_case=True) # set into PhysX API for attr_name, value in cfg.items(): safe_set_attribute_on_usd_schema(physx_rigid_body_api, attr_name, value, camel_case=True) # success return True """ Collision properties. """ def define_collision_properties( prim_path: str, cfg: schemas_cfg.CollisionPropertiesCfg, stage: Usd.Stage | None = None ): """Apply the collision schema on the input prim and set its properties. See :func:`modify_collision_properties` for more details on how the properties are set. Args: prim_path: The prim path where to apply the rigid body schema. cfg: The configuration for the collider. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Raises: ValueError: When the prim path is not valid. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim path is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # check if prim has collision applied on it if not UsdPhysics.CollisionAPI(prim): UsdPhysics.CollisionAPI.Apply(prim) # set collision properties modify_collision_properties(prim_path, cfg, stage) @apply_nested def modify_collision_properties( prim_path: str, cfg: schemas_cfg.CollisionPropertiesCfg, stage: Usd.Stage | None = None ) -> bool: """Modify PhysX properties of collider prim. These properties are based on the `UsdPhysics.CollisionAPI`_ and `PhysxSchema.PhysxCollisionAPI`_ schemas. For more information on the properties, please refer to the official documentation. Tuning these parameters influence the contact behavior of the rigid body. For more information on tune them and their effect on the simulation, please refer to the `PhysX documentation <https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/AdvancedCollisionDetection.html>`__. .. note:: This function is decorated with :func:`apply_nested` that sets the properties to all the prims (that have the schema applied on them) under the input prim path. .. _UsdPhysics.CollisionAPI: https://openusd.org/dev/api/class_usd_physics_collision_a_p_i.html .. _PhysxSchema.PhysxCollisionAPI: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_collision_a_p_i.html Args: prim_path: The prim path of parent. cfg: The configuration for the collider. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim collider_prim = stage.GetPrimAtPath(prim_path) # check if prim has collision applied on it if not UsdPhysics.CollisionAPI(collider_prim): return False # retrieve the USD collision api usd_collision_api = UsdPhysics.CollisionAPI(collider_prim) # retrieve the collision api physx_collision_api = PhysxSchema.PhysxCollisionAPI(collider_prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(collider_prim) # convert to dict cfg = cfg.to_dict() # set into USD API for attr_name in ["collision_enabled"]: value = cfg.pop(attr_name, None) safe_set_attribute_on_usd_schema(usd_collision_api, attr_name, value, camel_case=True) # set into PhysX API for attr_name, value in cfg.items(): safe_set_attribute_on_usd_schema(physx_collision_api, attr_name, value, camel_case=True) # success return True """ Mass properties. """ def define_mass_properties(prim_path: str, cfg: schemas_cfg.MassPropertiesCfg, stage: Usd.Stage | None = None): """Apply the mass schema on the input prim and set its properties. See :func:`modify_mass_properties` for more details on how the properties are set. Args: prim_path: The prim path where to apply the rigid body schema. cfg: The configuration for the mass properties. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Raises: ValueError: When the prim path is not valid. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim path is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # check if prim has mass applied on it if not UsdPhysics.MassAPI(prim): UsdPhysics.MassAPI.Apply(prim) # set mass properties modify_mass_properties(prim_path, cfg, stage) @apply_nested def modify_mass_properties(prim_path: str, cfg: schemas_cfg.MassPropertiesCfg, stage: Usd.Stage | None = None) -> bool: """Set properties for the mass of a rigid body prim. These properties are based on the `UsdPhysics.MassAPI` schema. If the mass is not defined, the density is used to compute the mass. However, in that case, a collision approximation of the rigid body is used to compute the density. For more information on the properties, please refer to the `documentation <https://openusd.org/release/wp_rigid_body_physics.html#body-mass-properties>`__. .. caution:: The mass of an object can be specified in multiple ways and have several conflicting settings that are resolved based on precedence. Please make sure to understand the precedence rules before using this property. .. note:: This function is decorated with :func:`apply_nested` that sets the properties to all the prims (that have the schema applied on them) under the input prim path. .. UsdPhysics.MassAPI: https://openusd.org/dev/api/class_usd_physics_mass_a_p_i.html Args: prim_path: The prim path of the rigid body. cfg: The configuration for the mass properties. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim rigid_prim = stage.GetPrimAtPath(prim_path) # check if prim has mass API applied on it if not UsdPhysics.MassAPI(rigid_prim): return False # retrieve the USD mass api usd_physics_mass_api = UsdPhysics.MassAPI(rigid_prim) # convert to dict cfg = cfg.to_dict() # set into USD API for attr_name in ["mass", "density"]: value = cfg.pop(attr_name, None) safe_set_attribute_on_usd_schema(usd_physics_mass_api, attr_name, value, camel_case=True) # success return True """ Contact sensor. """ def activate_contact_sensors(prim_path: str, threshold: float = 0.0, stage: Usd.Stage = None): """Activate the contact sensor on all rigid bodies under a specified prim path. This function adds the PhysX contact report API to all rigid bodies under the specified prim path. It also sets the force threshold beyond which the contact sensor reports the contact. The contact reporting API can only be added to rigid bodies. Args: prim_path: The prim path under which to search and prepare contact sensors. threshold: The threshold for the contact sensor. Defaults to 0.0. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Raises: ValueError: If the input prim path is not valid. ValueError: If there are no rigid bodies under the prim path. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get prim prim: Usd.Prim = stage.GetPrimAtPath(prim_path) # check if prim is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # iterate over all children num_contact_sensors = 0 all_prims = [prim] while len(all_prims) > 0: # get current prim child_prim = all_prims.pop(0) # check if prim is a rigid body # nested rigid bodies are not allowed by SDK so we can safely assume that # if a prim has a rigid body API, it is a rigid body and we don't need to # check its children if child_prim.HasAPI(UsdPhysics.RigidBodyAPI): # set sleep threshold to zero rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0.0) # add contact report API with threshold of zero if not child_prim.HasAPI(PhysxSchema.PhysxContactReportAPI): carb.log_verbose(f"Adding contact report API to prim: '{child_prim.GetPrimPath()}'") cr_api = PhysxSchema.PhysxContactReportAPI.Apply(child_prim) else: carb.log_verbose(f"Contact report API already exists on prim: '{child_prim.GetPrimPath()}'") cr_api = PhysxSchema.PhysxContactReportAPI.Get(stage, child_prim.GetPrimPath()) # set threshold to zero cr_api.CreateThresholdAttr().Set(threshold) # increment number of contact sensors num_contact_sensors += 1 else: # add all children to tree all_prims += child_prim.GetChildren() # check if no contact sensors were found if num_contact_sensors == 0: raise ValueError( f"No contact sensors added to the prim: '{prim_path}'. This means that no rigid bodies" " are present under this prim. Please check the prim path." ) # success return True """ Joint drive properties. """ @apply_nested def modify_joint_drive_properties( prim_path: str, drive_props: schemas_cfg.JointDrivePropertiesCfg, stage: Usd.Stage | None = None ) -> bool: """Modify PhysX parameters for a joint prim. This function checks if the input prim is a prismatic or revolute joint and applies the joint drive schema on it. If the joint is a tendon (i.e., it has the `PhysxTendonAxisAPI`_ schema applied on it), then the joint drive schema is not applied. Based on the configuration, this method modifies the properties of the joint drive. These properties are based on the `UsdPhysics.DriveAPI`_ schema. For more information on the properties, please refer to the official documentation. .. caution:: We highly recommend modifying joint properties of articulations through the functionalities in the :mod:`omni.isaac.orbit.actuators` module. The methods here are for setting simulation low-level properties only. .. _UsdPhysics.DriveAPI: https://openusd.org/dev/api/class_usd_physics_drive_a_p_i.html .. _PhysxTendonAxisAPI: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_tendon_axis_a_p_i.html Args: prim_path: The prim path where to apply the joint drive schema. drive_props: The configuration for the joint drive. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. Raises: ValueError: If the input prim path is not valid. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim prim = stage.GetPrimAtPath(prim_path) # check if prim path is valid if not prim.IsValid(): raise ValueError(f"Prim path '{prim_path}' is not valid.") # check if prim has joint drive applied on it if prim.IsA(UsdPhysics.RevoluteJoint): drive_api_name = "angular" elif prim.IsA(UsdPhysics.PrismaticJoint): drive_api_name = "linear" else: return False # check that prim is not a tendon child prim # note: root prim is what "controls" the tendon so we still want to apply the drive to it if prim.HasAPI(PhysxSchema.PhysxTendonAxisAPI) and not prim.HasAPI(PhysxSchema.PhysxTendonAxisRootAPI): return False # check if prim has joint drive applied on it usd_drive_api = UsdPhysics.DriveAPI(prim, drive_api_name) if not usd_drive_api: usd_drive_api = UsdPhysics.DriveAPI.Apply(prim, drive_api_name) # change the drive type to input if drive_props.drive_type is not None: usd_drive_api.CreateTypeAttr().Set(drive_props.drive_type) return True """ Fixed tendon properties. """ @apply_nested def modify_fixed_tendon_properties( prim_path: str, cfg: schemas_cfg.FixedTendonPropertiesCfg, stage: Usd.Stage | None = None ) -> bool: """Modify PhysX parameters for a fixed tendon attachment prim. A `fixed tendon`_ can be used to link multiple degrees of freedom of articulation joints through length and limit constraints. For instance, it can be used to set up an equality constraint between a driven and passive revolute joints. The schema comprises of attributes that belong to the `PhysxTendonAxisRootAPI`_ schema. .. note:: This function is decorated with :func:`apply_nested` that sets the properties to all the prims (that have the schema applied on them) under the input prim path. .. _fixed tendon: https://nvidia-omniverse.github.io/PhysX/physx/5.3.1/_api_build/class_px_articulation_fixed_tendon.html .. _PhysxTendonAxisRootAPI: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_tendon_axis_root_a_p_i.html Args: prim_path: The prim path to the tendon attachment. cfg: The configuration for the tendon attachment. stage: The stage where to find the prim. Defaults to None, in which case the current stage is used. Returns: True if the properties were successfully set, False otherwise. Raises: ValueError: If the input prim path is not valid. """ # obtain stage if stage is None: stage = stage_utils.get_current_stage() # get USD prim tendon_prim = stage.GetPrimAtPath(prim_path) # check if prim has fixed tendon applied on it has_root_fixed_tendon = tendon_prim.HasAPI(PhysxSchema.PhysxTendonAxisRootAPI) if not has_root_fixed_tendon: return False # resolve all available instances of the schema since it is multi-instance for schema_name in tendon_prim.GetAppliedSchemas(): # only consider the fixed tendon schema if "PhysxTendonAxisRootAPI" not in schema_name: continue # retrieve the USD tendon api instance_name = schema_name.split(":")[-1] physx_tendon_axis_api = PhysxSchema.PhysxTendonAxisRootAPI(tendon_prim, instance_name) # convert to dict cfg = cfg.to_dict() # set into PhysX API for attr_name, value in cfg.items(): safe_set_attribute_on_usd_schema(physx_tendon_axis_api, attr_name, value, camel_case=True) # success return True
23,529
Python
39.222222
157
0.69085
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/spawner_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from pxr import Usd from omni.isaac.orbit.sim import schemas from omni.isaac.orbit.utils import configclass @configclass class SpawnerCfg: """Configuration parameters for spawning an asset. Spawning an asset is done by calling the :attr:`func` function. The function takes in the prim path to spawn the asset at, the configuration instance and transformation, and returns the prim path of the spawned asset. The function is typically decorated with :func:`omni.isaac.orbit.sim.spawner.utils.clone` decorator that checks if input prim path is a regex expression and spawns the asset at all matching prims. For this, the decorator uses the Cloner API from Isaac Sim and handles the :attr:`copy_from_source` parameter. """ func: Callable[..., Usd.Prim] = MISSING """Function to use for spawning the asset. The function takes in the prim path (or expression) to spawn the asset at, the configuration instance and transformation, and returns the source prim spawned. """ visible: bool = True """Whether the spawned asset should be visible. Defaults to True.""" semantic_tags: list[tuple[str, str]] | None = None """List of semantic tags to add to the spawned asset. Defaults to None, which means no semantic tags will be added. The semantic tags follow the `Replicator Semantic` tagging system. Each tag is a tuple of the form ``(type, data)``, where ``type`` is the type of the tag and ``data`` is the semantic label associated with the tag. For example, to annotate a spawned asset in the class avocado, the semantic tag would be ``[("class", "avocado")]``. You can specify multiple semantic tags by passing in a list of tags. For example, to annotate a spawned asset in the class avocado and the color green, the semantic tags would be ``[("class", "avocado"), ("color", "green")]``. .. seealso:: For more information on the semantics filter, see the documentation for the `semantics schema editor`_. .. _semantics schema editor: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/semantics_schema_editor.html#semantics-filtering """ copy_from_source: bool = True """Whether to copy the asset from the source prim or inherit it. Defaults to True. This parameter is only used when cloning prims. If False, then the asset will be inherited from the source prim, i.e. all USD changes to the source prim will be reflected in the cloned prims. .. versionadded:: 2023.1 This parameter is only supported from Isaac Sim 2023.1 onwards. If you are using an older version of Isaac Sim, this parameter will be ignored. """ @configclass class RigidObjectSpawnerCfg(SpawnerCfg): """Configuration parameters for spawning a rigid asset. Note: By default, all properties are set to None. This means that no properties will be added or modified to the prim outside of the properties available by default when spawning the prim. """ mass_props: schemas.MassPropertiesCfg | None = None """Mass properties.""" rigid_props: schemas.RigidBodyPropertiesCfg | None = None """Rigid body properties.""" collision_props: schemas.CollisionPropertiesCfg | None = None """Properties to apply to all collision meshes.""" activate_contact_sensors: bool = False """Activate contact reporting on all rigid bodies. Defaults to False. This adds the PhysxContactReporter API to all the rigid bodies in the given prim path and its children. """
3,807
Python
38.666666
148
0.720252
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing utilities for creating prims in Omniverse. Spawners are used to create prims into Omniverse simulator. At their core, they are calling the USD Python API or Omniverse Kit Commands to create prims. However, they also provide a convenient interface for creating prims from their respective config classes. There are two main ways of using the spawners: 1. Using the function from the module .. code-block:: python import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR # spawn from USD file cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd") prim_path = "/World/myAsset" # spawn using the function from the module sim_utils.spawn_from_usd(prim_path, cfg) 2. Using the `func` reference in the config class .. code-block:: python import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR # spawn from USD file cfg = sim_utils.UsdFileCfg(usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd") prim_path = "/World/myAsset" # use the `func` reference in the config class cfg.func(prim_path, cfg) For convenience, we recommend using the second approach, as it allows to easily change the config class and the function call in a single line of code. Depending on the type of prim, the spawning-functions can also deal with the creation of prims over multiple prim path. These need to be provided as a regex prim path expressions, which are resolved based on the parent prim paths using the :meth:`omni.isaac.orbit.sim.utils.clone` function decorator. For example: * ``/World/Table_[1,2]/Robot`` will create the prims ``/World/Table_1/Robot`` and ``/World/Table_2/Robot`` only if the parent prim ``/World/Table_1`` and ``/World/Table_2`` exist. * ``/World/Robot_[1,2]`` will **NOT** create the prims ``/World/Robot_1`` and ``/World/Robot_2`` as the prim path expression can be resolved to multiple prims. """ from .from_files import * # noqa: F401, F403 from .lights import * # noqa: F401, F403 from .materials import * # noqa: F401, F403 from .sensors import * # noqa: F401, F403 from .shapes import * # noqa: F401, F403 from .spawner_cfg import * # noqa: F401, F403
2,479
Python
38.365079
111
0.73215
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/sensors/sensors.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import omni.isaac.core.utils.prims as prim_utils import omni.kit.commands from pxr import Sdf, Usd from omni.isaac.orbit.sim.utils import clone from omni.isaac.orbit.utils import to_camel_case if TYPE_CHECKING: from . import sensors_cfg CUSTOM_PINHOLE_CAMERA_ATTRIBUTES = { "projection_type": ("cameraProjectionType", Sdf.ValueTypeNames.Token), } """Custom attributes for pinhole camera model. The dictionary maps the attribute name in the configuration to the attribute name in the USD prim. """ CUSTOM_FISHEYE_CAMERA_ATTRIBUTES = { "projection_type": ("cameraProjectionType", Sdf.ValueTypeNames.Token), "fisheye_nominal_width": ("fthetaWidth", Sdf.ValueTypeNames.Float), "fisheye_nominal_height": ("fthetaHeight", Sdf.ValueTypeNames.Float), "fisheye_optical_centre_x": ("fthetaCx", Sdf.ValueTypeNames.Float), "fisheye_optical_centre_y": ("fthetaCy", Sdf.ValueTypeNames.Float), "fisheye_max_fov": ("fthetaMaxFov", Sdf.ValueTypeNames.Float), "fisheye_polynomial_a": ("fthetaPolyA", Sdf.ValueTypeNames.Float), "fisheye_polynomial_b": ("fthetaPolyB", Sdf.ValueTypeNames.Float), "fisheye_polynomial_c": ("fthetaPolyC", Sdf.ValueTypeNames.Float), "fisheye_polynomial_d": ("fthetaPolyD", Sdf.ValueTypeNames.Float), "fisheye_polynomial_e": ("fthetaPolyE", Sdf.ValueTypeNames.Float), "fisheye_polynomial_f": ("fthetaPolyF", Sdf.ValueTypeNames.Float), } """Custom attributes for fisheye camera model. The dictionary maps the attribute name in the configuration to the attribute name in the USD prim. """ @clone def spawn_camera( prim_path: str, cfg: sensors_cfg.PinholeCameraCfg | sensors_cfg.FisheyeCameraCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USD camera prim with given projection type. The function creates various attributes on the camera prim that specify the camera's properties. These are later used by ``omni.replicator.core`` to render the scene with the given camera. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn camera if it doesn't exist. if not prim_utils.is_prim_path_valid(prim_path): prim_utils.create_prim(prim_path, "Camera", translation=translation, orientation=orientation) else: raise ValueError(f"A prim already exists at path: '{prim_path}'.") # lock camera from viewport (this disables viewport movement for camera) if cfg.lock_camera: omni.kit.commands.execute( "ChangePropertyCommand", prop_path=Sdf.Path(f"{prim_path}.omni:kit:cameraLock"), value=True, prev=None, type_to_create_if_not_exist=Sdf.ValueTypeNames.Bool, ) # decide the custom attributes to add if cfg.projection_type == "pinhole": attribute_types = CUSTOM_PINHOLE_CAMERA_ATTRIBUTES else: attribute_types = CUSTOM_FISHEYE_CAMERA_ATTRIBUTES # custom attributes in the config that are not USD Camera parameters non_usd_cfg_param_names = ["func", "copy_from_source", "lock_camera", "visible", "semantic_tags"] # get camera prim prim = prim_utils.get_prim_at_path(prim_path) # create attributes for the fisheye camera model # note: for pinhole those are already part of the USD camera prim for attr_name, attr_type in attribute_types.values(): # check if attribute does not exist if prim.GetAttribute(attr_name).Get() is None: # create attribute based on type prim.CreateAttribute(attr_name, attr_type) # set attribute values for param_name, param_value in cfg.__dict__.items(): # check if value is valid if param_value is None or param_name in non_usd_cfg_param_names: continue # obtain prim property name if param_name in attribute_types: # check custom attributes prim_prop_name = attribute_types[param_name][0] else: # convert attribute name in prim to cfg name prim_prop_name = to_camel_case(param_name, to="cC") # get attribute from the class prim.GetAttribute(prim_prop_name).Set(param_value) # return the prim return prim_utils.get_prim_at_path(prim_path)
5,404
Python
40.576923
115
0.687454
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/sensors/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for spawners that spawn sensors in the simulation. Currently, the following sensors are supported: * Camera: A USD camera prim with settings for pinhole or fisheye projections. """ from .sensors import spawn_camera from .sensors_cfg import FisheyeCameraCfg, PinholeCameraCfg
416
Python
25.062498
77
0.778846
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/sensors/sensors_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from typing import Literal from omni.isaac.orbit.sim.spawners.spawner_cfg import SpawnerCfg from omni.isaac.orbit.utils import configclass from . import sensors @configclass class PinholeCameraCfg(SpawnerCfg): """Configuration parameters for a USD camera prim with pinhole camera settings. For more information on the parameters, please refer to the `camera documentation <https://docs.omniverse.nvidia.com/materials-and-rendering/latest/cameras.html>`__. .. note:: The default values are taken from the `Replicator camera <https://docs.omniverse.nvidia.com/py/replicator/1.9.8/source/extensions/omni.replicator.core/docs/API.html#omni.replicator.core.create.camera>`__ function. """ func: Callable = sensors.spawn_camera projection_type: str = "pinhole" """Type of projection to use for the camera. Defaults to "pinhole". Note: Currently only "pinhole" is supported. """ clipping_range: tuple[float, float] = (0.01, 1e6) """Near and far clipping distances (in m). Defaults to (0.01, 1e6). The minimum clipping range will shift the camera forward by the specified distance. Don't set it too high to avoid issues for distance related data types (e.g., ``distance_to_image_plane``). """ focal_length: float = 24.0 """Perspective focal length (in cm). Defaults to 24.0cm. Longer lens lengths narrower FOV, shorter lens lengths wider FOV. """ focus_distance: float = 400.0 """Distance from the camera to the focus plane (in m). Defaults to 400.0. The distance at which perfect sharpness is achieved. """ f_stop: float = 0.0 """Lens aperture. Defaults to 0.0, which turns off focusing. Controls Distance Blurring. Lower Numbers decrease focus range, larger numbers increase it. """ horizontal_aperture: float = 20.955 """Horizontal aperture (in mm). Defaults to 20.955mm. Emulates sensor/film width on a camera. Note: The default value is the horizontal aperture of a 35 mm spherical projector. """ horizontal_aperture_offset: float = 0.0 """Offsets Resolution/Film gate horizontally. Defaults to 0.0.""" vertical_aperture_offset: float = 0.0 """Offsets Resolution/Film gate vertically. Defaults to 0.0.""" lock_camera: bool = True """Locks the camera in the Omniverse viewport. Defaults to True. If True, then the camera remains fixed at its configured transform. This is useful when wanting to view the camera output on the GUI and not accidentally moving the camera through the GUI interactions. """ @configclass class FisheyeCameraCfg(PinholeCameraCfg): """Configuration parameters for a USD camera prim with `fish-eye camera`_ settings. For more information on the parameters, please refer to the `camera documentation <https://docs.omniverse.nvidia.com/materials-and-rendering/latest/cameras.html#fisheye-properties>`__. .. note:: The default values are taken from the `Replicator camera <https://docs.omniverse.nvidia.com/py/replicator/1.9.8/source/extensions/omni.replicator.core/docs/API.html#omni.replicator.core.create.camera>`__ function. .. _fish-eye camera: https://en.wikipedia.org/wiki/Fisheye_lens """ func: Callable = sensors.spawn_camera projection_type: Literal[ "fisheye_orthographic", "fisheye_equidistant", "fisheye_equisolid", "fisheye_polynomial", "fisheye_spherical" ] = "fisheye_polynomial" r"""Type of projection to use for the camera. Defaults to "fisheye_polynomial". Available options: - ``"fisheye_orthographic"``: Fisheye camera model using orthographic correction. - ``"fisheye_equidistant"``: Fisheye camera model using equidistant correction. - ``"fisheye_equisolid"``: Fisheye camera model using equisolid correction. - ``"fisheye_polynomial"``: Fisheye camera model with :math:`360^{\circ}` spherical projection. - ``"fisheye_spherical"``: Fisheye camera model with :math:`360^{\circ}` full-frame projection. """ fisheye_nominal_width: float = 1936.0 """Nominal width of fisheye lens model (in pixels). Defaults to 1936.0.""" fisheye_nominal_height: float = 1216.0 """Nominal height of fisheye lens model (in pixels). Defaults to 1216.0.""" fisheye_optical_centre_x: float = 970.94244 """Horizontal optical centre position of fisheye lens model (in pixels). Defaults to 970.94244.""" fisheye_optical_centre_y: float = 600.37482 """Vertical optical centre position of fisheye lens model (in pixels). Defaults to 600.37482.""" fisheye_max_fov: float = 200.0 """Maximum field of view of fisheye lens model (in degrees). Defaults to 200.0 degrees.""" fisheye_polynomial_a: float = 0.0 """First component of fisheye polynomial. Defaults to 0.0.""" fisheye_polynomial_b: float = 0.00245 """Second component of fisheye polynomial. Defaults to 0.00245.""" fisheye_polynomial_c: float = 0.0 """Third component of fisheye polynomial. Defaults to 0.0.""" fisheye_polynomial_d: float = 0.0 """Fourth component of fisheye polynomial. Defaults to 0.0.""" fisheye_polynomial_e: float = 0.0 """Fifth component of fisheye polynomial. Defaults to 0.0.""" fisheye_polynomial_f: float = 0.0 """Sixth component of fisheye polynomial. Defaults to 0.0."""
5,559
Python
42.4375
211
0.706602
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/lights/lights_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.sim.spawners.spawner_cfg import SpawnerCfg from omni.isaac.orbit.utils import configclass from . import lights @configclass class LightCfg(SpawnerCfg): """Configuration parameters for creating a light in the scene. Please refer to the documentation on `USD LuxLight <https://openusd.org/dev/api/class_usd_lux_light_a_p_i.html>`_ for more information. .. note:: The default values for the attributes are those specified in the their official documentation. """ func: Callable = lights.spawn_light prim_type: str = MISSING """The prim type name for the light prim.""" color: tuple[float, float, float] = (1.0, 1.0, 1.0) """The color of emitted light, in energy-linear terms. Defaults to white.""" enable_color_temperature: bool = False """Enables color temperature. Defaults to false.""" color_temperature: float = 6500.0 """Color temperature (in Kelvin) representing the white point. The valid range is [1000, 10000]. Defaults to 6500K. The `color temperature <https://en.wikipedia.org/wiki/Color_temperature>`_ corresponds to the warmth or coolness of light. Warmer light has a lower color temperature, while cooler light has a higher color temperature. Note: It only takes effect when :attr:`enable_color_temperature` is true. """ normalize: bool = False """Normalizes power by the surface area of the light. Defaults to false. This makes it easier to independently adjust the power and shape of the light, by causing the power to not vary with the area or angular size of the light. """ exposure: float = 0.0 """Scales the power of the light exponentially as a power of 2. Defaults to 0.0. The result is multiplied against the intensity. """ intensity: float = 1.0 """Scales the power of the light linearly. Defaults to 1.0.""" @configclass class DiskLightCfg(LightCfg): """Configuration parameters for creating a disk light in the scene. A disk light is a light source that emits light from a disk. It is useful for simulating fluorescent lights. For more information, please refer to the documentation on `USDLux DiskLight <https://openusd.org/dev/api/class_usd_lux_disk_light.html>`_. .. note:: The default values for the attributes are those specified in the their official documentation. """ prim_type = "DiskLight" radius: float = 0.5 """Radius of the disk (in m). Defaults to 0.5m.""" @configclass class DistantLightCfg(LightCfg): """Configuration parameters for creating a distant light in the scene. A distant light is a light source that is infinitely far away, and emits parallel rays of light. It is useful for simulating sun/moon light. For more information, please refer to the documentation on `USDLux DistantLight <https://openusd.org/dev/api/class_usd_lux_distant_light.html>`_. .. note:: The default values for the attributes are those specified in the their official documentation. """ prim_type = "DistantLight" angle: float = 0.53 """Angular size of the light (in degrees). Defaults to 0.53 degrees. As an example, the Sun is approximately 0.53 degrees as seen from Earth. Higher values broaden the light and therefore soften shadow edges. """ @configclass class DomeLightCfg(LightCfg): """Configuration parameters for creating a dome light in the scene. A dome light is a light source that emits light inwards from all directions. It is also possible to attach a texture to the dome light, which will be used to emit light. For more information, please refer to the documentation on `USDLux DomeLight <https://openusd.org/dev/api/class_usd_lux_dome_light.html>`_. .. note:: The default values for the attributes are those specified in the their official documentation. """ prim_type = "DomeLight" texture_file: str | None = None """A color texture to use on the dome, such as an HDR (high dynamic range) texture intended for IBL (image based lighting). Defaults to None. If None, the dome will emit a uniform color. """ texture_format: Literal["automatic", "latlong", "mirroredBall", "angular", "cubeMapVerticalCross"] = "automatic" """The parametrization format of the color map file. Defaults to "automatic". Valid values are: * ``"automatic"``: Tries to determine the layout from the file itself. For example, Renderman texture files embed an explicit parameterization. * ``"latlong"``: Latitude as X, longitude as Y. * ``"mirroredBall"``: An image of the environment reflected in a sphere, using an implicitly orthogonal projection. * ``"angular"``: Similar to mirroredBall but the radial dimension is mapped linearly to the angle, providing better sampling at the edges. * ``"cubeMapVerticalCross"``: A cube map with faces laid out as a vertical cross. """ @configclass class CylinderLightCfg(LightCfg): """Configuration parameters for creating a cylinder light in the scene. A cylinder light is a light source that emits light from a cylinder. It is useful for simulating fluorescent lights. For more information, please refer to the documentation on `USDLux CylinderLight <https://openusd.org/dev/api/class_usd_lux_cylinder_light.html>`_. .. note:: The default values for the attributes are those specified in the their official documentation. """ prim_type = "CylinderLight" length: float = 1.0 """Length of the cylinder (in m). Defaults to 1.0m.""" radius: float = 0.5 """Radius of the cylinder (in m). Defaults to 0.5m.""" treat_as_line: bool = False """Treats the cylinder as a line source, i.e. a zero-radius cylinder. Defaults to false.""" @configclass class SphereLightCfg(LightCfg): """Configuration parameters for creating a sphere light in the scene. A sphere light is a light source that emits light outward from a sphere. For more information, please refer to the documentation on `USDLux SphereLight <https://openusd.org/dev/api/class_usd_lux_sphere_light.html>`_. .. note:: The default values for the attributes are those specified in the their official documentation. """ prim_type = "SphereLight" radius: float = 0.5 """Radius of the sphere. Defaults to 0.5m.""" treat_as_point: bool = False """Treats the sphere as a point source, i.e. a zero-radius sphere. Defaults to false."""
6,801
Python
35.767567
147
0.708278
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/lights/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for spawners that spawn lights in the simulation. There are various different kinds of lights that can be spawned into the USD stage. Please check the Omniverse documentation for `lighting overview <https://docs.omniverse.nvidia.com/materials-and-rendering/latest/103/lighting.html>`_. """ from .lights import spawn_light from .lights_cfg import CylinderLightCfg, DiskLightCfg, DistantLightCfg, DomeLightCfg, LightCfg, SphereLightCfg
573
Python
37.266664
111
0.794066
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/lights/lights.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import omni.isaac.core.utils.prims as prim_utils from pxr import Usd, UsdLux from omni.isaac.orbit.sim.utils import clone, safe_set_attribute_on_usd_prim if TYPE_CHECKING: from . import lights_cfg @clone def spawn_light( prim_path: str, cfg: lights_cfg.LightCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a light prim at the specified prim path with the specified configuration. The created prim is based on the `USD.LuxLight <https://openusd.org/dev/api/class_usd_lux_light_a_p_i.html>`_ API. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration for the light source. translation: The translation of the prim. Defaults to None, in which case this is set to the origin. orientation: The orientation of the prim as (w, x, y, z). Defaults to None, in which case this is set to identity. Raises: ValueError: When a prim already exists at the specified prim path. """ # check if prim already exists if prim_utils.is_prim_path_valid(prim_path): raise ValueError(f"A prim already exists at path: '{prim_path}'.") # create the prim prim = prim_utils.create_prim(prim_path, prim_type=cfg.prim_type, translation=translation, orientation=orientation) # convert to dict cfg = cfg.to_dict() # delete spawner func specific parameters del cfg["prim_type"] # delete custom attributes in the config that are not USD parameters non_usd_cfg_param_names = ["func", "copy_from_source", "visible", "semantic_tags"] for param_name in non_usd_cfg_param_names: del cfg[param_name] # set into USD API for attr_name, value in cfg.items(): # special operation for texture properties # note: this is only used for dome light if "texture" in attr_name: light_prim = UsdLux.DomeLight(prim) if attr_name == "texture_file": light_prim.CreateTextureFileAttr(value) elif attr_name == "texture_format": light_prim.CreateTextureFormatAttr(value) else: raise ValueError(f"Unsupported texture attribute: '{attr_name}'.") else: prim_prop_name = f"inputs:{attr_name}" # set the attribute safe_set_attribute_on_usd_prim(prim, prim_prop_name, value, camel_case=True) # return the prim return prim
3,120
Python
39.01282
119
0.666346
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/shapes/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for spawning primitive shapes in the simulation. NVIDIA Omniverse provides various primitive shapes that can be used to create USDGeom prims. Based on the configuration, the spawned prim can be: * a visual mesh (no physics) * a static collider (no rigid body) * a rigid body (with collision and rigid body properties). """ from .shapes import spawn_capsule, spawn_cone, spawn_cuboid, spawn_cylinder, spawn_sphere from .shapes_cfg import CapsuleCfg, ConeCfg, CuboidCfg, CylinderCfg, ShapeCfg, SphereCfg
643
Python
32.894735
98
0.772939
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/shapes/shapes_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.sim.spawners import materials from omni.isaac.orbit.sim.spawners.spawner_cfg import RigidObjectSpawnerCfg from omni.isaac.orbit.utils import configclass from . import shapes @configclass class ShapeCfg(RigidObjectSpawnerCfg): """Configuration parameters for a USD Geometry or Geom prim.""" visual_material_path: str = "material" """Path to the visual material to use for the prim. Defaults to "material". If the path is relative, then it will be relative to the prim's path. This parameter is ignored if `visual_material` is not None. """ visual_material: materials.VisualMaterialCfg | None = None """Visual material properties. Note: If None, then no visual material will be added. """ physics_material_path: str = "material" """Path to the physics material to use for the prim. Defaults to "material". If the path is relative, then it will be relative to the prim's path. This parameter is ignored if `physics_material` is not None. """ physics_material: materials.PhysicsMaterialCfg | None = None """Physics material properties. Note: If None, then no physics material will be added. """ @configclass class SphereCfg(ShapeCfg): """Configuration parameters for a sphere prim. See :meth:`spawn_sphere` for more information. """ func: Callable = shapes.spawn_sphere radius: float = MISSING """Radius of the sphere (in m).""" @configclass class CuboidCfg(ShapeCfg): """Configuration parameters for a cuboid prim. See :meth:`spawn_cuboid` for more information. """ func: Callable = shapes.spawn_cuboid size: tuple[float, float, float] = MISSING """Size of the cuboid.""" @configclass class CylinderCfg(ShapeCfg): """Configuration parameters for a cylinder prim. See :meth:`spawn_cylinder` for more information. """ func: Callable = shapes.spawn_cylinder radius: float = MISSING """Radius of the cylinder (in m).""" height: float = MISSING """Height of the cylinder (in m).""" axis: Literal["X", "Y", "Z"] = "Z" """Axis of the cylinder. Defaults to "Z".""" @configclass class CapsuleCfg(ShapeCfg): """Configuration parameters for a capsule prim. See :meth:`spawn_capsule` for more information. """ func: Callable = shapes.spawn_capsule radius: float = MISSING """Radius of the capsule (in m).""" height: float = MISSING """Height of the capsule (in m).""" axis: Literal["X", "Y", "Z"] = "Z" """Axis of the capsule. Defaults to "Z".""" @configclass class ConeCfg(ShapeCfg): """Configuration parameters for a cone prim. See :meth:`spawn_cone` for more information. """ func: Callable = shapes.spawn_cone radius: float = MISSING """Radius of the cone (in m).""" height: float = MISSING """Height of the v (in m).""" axis: Literal["X", "Y", "Z"] = "Z" """Axis of the cone. Defaults to "Z"."""
3,258
Python
25.072
80
0.668201
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/shapes/shapes.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import omni.isaac.core.utils.prims as prim_utils from pxr import Usd from omni.isaac.orbit.sim import schemas from omni.isaac.orbit.sim.utils import bind_physics_material, bind_visual_material, clone if TYPE_CHECKING: from . import shapes_cfg @clone def spawn_sphere( prim_path: str, cfg: shapes_cfg.SphereCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USDGeom-based sphere prim with the given attributes. For more information, see `USDGeomSphere <https://openusd.org/dev/api/class_usd_geom_sphere.html>`_. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn sphere if it doesn't exist. attributes = {"radius": cfg.radius} _spawn_geom_from_prim_type(prim_path, cfg, "Sphere", attributes, translation, orientation) # return the prim return prim_utils.get_prim_at_path(prim_path) @clone def spawn_cuboid( prim_path: str, cfg: shapes_cfg.CuboidCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USDGeom-based cuboid prim with the given attributes. For more information, see `USDGeomCube <https://openusd.org/dev/api/class_usd_geom_cube.html>`_. Note: Since USD only supports cubes, we set the size of the cube to the minimum of the given size and scale the cube accordingly. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: If a prim already exists at the given path. """ # resolve the scale size = min(cfg.size) scale = [dim / size for dim in cfg.size] # spawn cuboid if it doesn't exist. attributes = {"size": size} _spawn_geom_from_prim_type(prim_path, cfg, "Cube", attributes, translation, orientation, scale) # return the prim return prim_utils.get_prim_at_path(prim_path) @clone def spawn_cylinder( prim_path: str, cfg: shapes_cfg.CylinderCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USDGeom-based cylinder prim with the given attributes. For more information, see `USDGeomCylinder <https://openusd.org/dev/api/class_usd_geom_cylinder.html>`_. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn cylinder if it doesn't exist. attributes = {"radius": cfg.radius, "height": cfg.height, "axis": cfg.axis.upper()} _spawn_geom_from_prim_type(prim_path, cfg, "Cylinder", attributes, translation, orientation) # return the prim return prim_utils.get_prim_at_path(prim_path) @clone def spawn_capsule( prim_path: str, cfg: shapes_cfg.CapsuleCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USDGeom-based capsule prim with the given attributes. For more information, see `USDGeomCapsule <https://openusd.org/dev/api/class_usd_geom_capsule.html>`_. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn capsule if it doesn't exist. attributes = {"radius": cfg.radius, "height": cfg.height, "axis": cfg.axis.upper()} _spawn_geom_from_prim_type(prim_path, cfg, "Capsule", attributes, translation, orientation) # return the prim return prim_utils.get_prim_at_path(prim_path) @clone def spawn_cone( prim_path: str, cfg: shapes_cfg.ConeCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Create a USDGeom-based cone prim with the given attributes. For more information, see `USDGeomCone <https://openusd.org/dev/api/class_usd_geom_cone.html>`_. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn cone if it doesn't exist. attributes = {"radius": cfg.radius, "height": cfg.height, "axis": cfg.axis.upper()} _spawn_geom_from_prim_type(prim_path, cfg, "Cone", attributes, translation, orientation) # return the prim return prim_utils.get_prim_at_path(prim_path) """ Helper functions. """ def _spawn_geom_from_prim_type( prim_path: str, cfg: shapes_cfg.GeometryCfg, prim_type: str, attributes: dict, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, scale: tuple[float, float, float] | None = None, ): """Create a USDGeom-based prim with the given attributes. To make the asset instanceable, we must follow a certain structure dictated by how USD scene-graph instancing and physics work. The rigid body component must be added to each instance and not the referenced asset (i.e. the prototype prim itself). This is because the rigid body component defines properties that are specific to each instance and cannot be shared under the referenced asset. For more information, please check the `documentation <https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/rigid-bodies.html#instancing-rigid-bodies>`_. Due to the above, we follow the following structure: * ``{prim_path}`` - The root prim that is an Xform with the rigid body and mass APIs if configured. * ``{prim_path}/geometry`` - The prim that contains the mesh and optionally the materials if configured. If instancing is enabled, this prim will be an instanceable reference to the prototype prim. Args: prim_path: The prim path to spawn the asset at. cfg: The config containing the properties to apply. prim_type: The type of prim to create. attributes: The attributes to apply to the prim. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to the origin. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case this is set to identity. scale: The scale to apply to the prim. Defaults to None, in which case this is set to identity. Raises: ValueError: If a prim already exists at the given path. """ # spawn geometry if it doesn't exist. if not prim_utils.is_prim_path_valid(prim_path): prim_utils.create_prim(prim_path, prim_type="Xform", translation=translation, orientation=orientation) else: raise ValueError(f"A prim already exists at path: '{prim_path}'.") # create all the paths we need for clarity geom_prim_path = prim_path + "/geometry" mesh_prim_path = geom_prim_path + "/mesh" # create the geometry prim prim_utils.create_prim(mesh_prim_path, prim_type, scale=scale, attributes=attributes) # apply collision properties if cfg.collision_props is not None: schemas.define_collision_properties(mesh_prim_path, cfg.collision_props) # apply visual material if cfg.visual_material is not None: if not cfg.visual_material_path.startswith("/"): material_path = f"{geom_prim_path}/{cfg.visual_material_path}" else: material_path = cfg.visual_material_path # create material cfg.visual_material.func(material_path, cfg.visual_material) # apply material bind_visual_material(mesh_prim_path, material_path) # apply physics material if cfg.physics_material is not None: if not cfg.physics_material_path.startswith("/"): material_path = f"{geom_prim_path}/{cfg.physics_material_path}" else: material_path = cfg.physics_material_path # create material cfg.physics_material.func(material_path, cfg.physics_material) # apply material bind_physics_material(mesh_prim_path, material_path) # note: we apply rigid properties in the end to later make the instanceable prim # apply mass properties if cfg.mass_props is not None: schemas.define_mass_properties(prim_path, cfg.mass_props) # apply rigid body properties if cfg.rigid_props is not None: schemas.define_rigid_body_properties(prim_path, cfg.rigid_props)
12,873
Python
41.629139
164
0.678552
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/from_files/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for spawners that spawn assets from files. Currently, the following spawners are supported: * :class:`UsdFileCfg`: Spawn an asset from a USD file. * :class:`UrdfFileCfg`: Spawn an asset from a URDF file. * :class:`GroundPlaneCfg`: Spawn a ground plane using the grid-world USD file. """ from .from_files import spawn_from_urdf, spawn_from_usd, spawn_ground_plane from .from_files_cfg import GroundPlaneCfg, UrdfFileCfg, UsdFileCfg
572
Python
30.833332
78
0.756993
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/from_files/from_files.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import carb import omni.isaac.core.utils.prims as prim_utils import omni.kit.commands from pxr import Gf, Sdf, Usd from omni.isaac.orbit.sim import converters, schemas from omni.isaac.orbit.sim.utils import bind_physics_material, bind_visual_material, clone from omni.isaac.orbit.utils.assets import check_file_path if TYPE_CHECKING: from . import from_files_cfg @clone def spawn_from_usd( prim_path: str, cfg: from_files_cfg.UsdFileCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Spawn an asset from a USD file and override the settings with the given config. In the case of a USD file, the asset is spawned at the default prim specified in the USD file. If a default prim is not specified, then the asset is spawned at the root prim. In case a prim already exists at the given prim path, then the function does not create a new prim or throw an error that the prim already exists. Instead, it just takes the existing prim and overrides the settings with the given config. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the translation specified in the USD file is used. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the orientation specified in the USD file is used. Returns: The prim of the spawned asset. Raises: FileNotFoundError: If the USD file does not exist at the given path. """ # spawn asset from the given usd file return _spawn_from_usd_file(prim_path, cfg.usd_path, cfg, translation, orientation) @clone def spawn_from_urdf( prim_path: str, cfg: from_files_cfg.UrdfFileCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Spawn an asset from a URDF file and override the settings with the given config. It uses the :class:`UrdfConverter` class to create a USD file from URDF. This file is then imported at the specified prim path. In case a prim already exists at the given prim path, then the function does not create a new prim or throw an error that the prim already exists. Instead, it just takes the existing prim and overrides the settings with the given config. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the translation specified in the generated USD file is used. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the orientation specified in the generated USD file is used. Returns: The prim of the spawned asset. Raises: FileNotFoundError: If the URDF file does not exist at the given path. """ # urdf loader to convert urdf to usd urdf_loader = converters.UrdfConverter(cfg) # spawn asset from the generated usd file return _spawn_from_usd_file(prim_path, urdf_loader.usd_path, cfg, translation, orientation) def spawn_ground_plane( prim_path: str, cfg: from_files_cfg.GroundPlaneCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Spawns a ground plane into the scene. This function loads the USD file containing the grid plane asset from Isaac Sim. It may not work with other assets for ground planes. In those cases, please use the `spawn_from_usd` function. Note: This function takes keyword arguments to be compatible with other spawners. However, it does not use any of the kwargs. Args: prim_path: The path to spawn the asset at. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the translation specified in the USD file is used. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the orientation specified in the USD file is used. Returns: The prim of the spawned asset. Raises: ValueError: If the prim path already exists. """ # Spawn Ground-plane if not prim_utils.is_prim_path_valid(prim_path): prim_utils.create_prim(prim_path, usd_path=cfg.usd_path, translation=translation, orientation=orientation) else: raise ValueError(f"A prim already exists at path: '{prim_path}'.") # Create physics material if cfg.physics_material is not None: cfg.physics_material.func(f"{prim_path}/physicsMaterial", cfg.physics_material) # Apply physics material to ground plane collision_prim_path = prim_utils.get_prim_path( prim_utils.get_first_matching_child_prim( prim_path, predicate=lambda x: prim_utils.get_prim_type_name(x) == "Plane" ) ) bind_physics_material(collision_prim_path, f"{prim_path}/physicsMaterial") # Scale only the mesh # Warning: This is specific to the default grid plane asset. if prim_utils.is_prim_path_valid(f"{prim_path}/Enviroment"): # compute scale from size scale = (cfg.size[0] / 100.0, cfg.size[1] / 100.0, 1.0) # apply scale to the mesh omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path(f"{prim_path}/Enviroment.xformOp:scale"), value=scale, prev=None, ) # Change the color of the plane # Warning: This is specific to the default grid plane asset. if cfg.color is not None: prop_path = f"{prim_path}/Looks/theGrid/Shader.inputs:diffuse_tint" # change the color omni.kit.commands.execute( "ChangePropertyCommand", prop_path=Sdf.Path(prop_path), value=Gf.Vec3f(*cfg.color), prev=None, type_to_create_if_not_exist=Sdf.ValueTypeNames.Color3f, ) # Remove the light from the ground plane # It isn't bright enough and messes up with the user's lighting settings omni.kit.commands.execute("ToggleVisibilitySelectedPrims", selected_paths=[f"{prim_path}/SphereLight"]) # return the prim return prim_utils.get_prim_at_path(prim_path) """ Helper functions. """ def _spawn_from_usd_file( prim_path: str, usd_path: str, cfg: from_files_cfg.FileCfg, translation: tuple[float, float, float] | None = None, orientation: tuple[float, float, float, float] | None = None, ) -> Usd.Prim: """Spawn an asset from a USD file and override the settings with the given config. In case a prim already exists at the given prim path, then the function does not create a new prim or throw an error that the prim already exists. Instead, it just takes the existing prim and overrides the settings with the given config. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. translation: The translation to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the translation specified in the generated USD file is used. orientation: The orientation in (w, x, y, z) to apply to the prim w.r.t. its parent prim. Defaults to None, in which case the orientation specified in the generated USD file is used. Returns: The prim of the spawned asset. Raises: FileNotFoundError: If the USD file does not exist at the given path. """ # check file path exists if not check_file_path(usd_path): raise FileNotFoundError(f"USD file not found at path: '{usd_path}'.") # spawn asset if it doesn't exist. if not prim_utils.is_prim_path_valid(prim_path): # add prim as reference to stage prim_utils.create_prim( prim_path, usd_path=usd_path, translation=translation, orientation=orientation, scale=cfg.scale, ) else: carb.log_warn(f"A prim already exists at prim path: '{prim_path}'.") # modify rigid body properties if cfg.rigid_props is not None: schemas.modify_rigid_body_properties(prim_path, cfg.rigid_props) # modify collision properties if cfg.collision_props is not None: schemas.modify_collision_properties(prim_path, cfg.collision_props) # modify mass properties if cfg.mass_props is not None: schemas.modify_mass_properties(prim_path, cfg.mass_props) # modify articulation root properties if cfg.articulation_props is not None: schemas.modify_articulation_root_properties(prim_path, cfg.articulation_props) # modify tendon properties if cfg.fixed_tendons_props is not None: schemas.modify_fixed_tendon_properties(prim_path, cfg.fixed_tendons_props) # define drive API on the joints # note: these are only for setting low-level simulation properties. all others should be set or are # and overridden by the articulation/actuator properties. if cfg.joint_drive_props is not None: schemas.modify_joint_drive_properties(prim_path, cfg.joint_drive_props) # apply visual material if cfg.visual_material is not None: if not cfg.visual_material_path.startswith("/"): material_path = f"{prim_path}/{cfg.visual_material_path}" else: material_path = cfg.visual_material_path # create material cfg.visual_material.func(material_path, cfg.visual_material) # apply material bind_visual_material(prim_path, material_path) # return the prim return prim_utils.get_prim_at_path(prim_path)
11,293
Python
40.98513
115
0.679625
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/from_files/from_files_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from omni.isaac.orbit.sim import converters, schemas from omni.isaac.orbit.sim.spawners import materials from omni.isaac.orbit.sim.spawners.spawner_cfg import RigidObjectSpawnerCfg, SpawnerCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from . import from_files @configclass class FileCfg(RigidObjectSpawnerCfg): """Configuration parameters for spawning an asset from a file. Note: By default, all properties are set to None. This means that no properties will be added or modified to the prim outside of the properties available by default when spawning the prim. """ scale: tuple[float, float, float] | None = None """Scale of the asset. Defaults to None, in which case the scale is not modified.""" articulation_props: schemas.ArticulationPropertiesCfg | None = None """Properties to apply to the articulation root.""" fixed_tendons_props: schemas.FixedTendonsPropertiesCfg | None = None """Properties to apply to the fixed tendons (if any).""" joint_drive_props: schemas.JointDrivePropertiesCfg | None = None """Properties to apply to a joint.""" visual_material_path: str = "material" """Path to the visual material to use for the prim. Defaults to "material". If the path is relative, then it will be relative to the prim's path. This parameter is ignored if `visual_material` is not None. """ visual_material: materials.VisualMaterialCfg | None = None """Visual material properties to override the visual material properties in the URDF file. Note: If None, then no visual material will be added. """ @configclass class UsdFileCfg(FileCfg): """USD file to spawn asset from. See :meth:`spawn_from_usd` for more information. .. note:: The configuration parameters include various properties. If not `None`, these properties are modified on the spawned prim in a nested manner. """ func: Callable = from_files.spawn_from_usd usd_path: str = MISSING """Path to the USD file to spawn asset from.""" @configclass class UrdfFileCfg(FileCfg, converters.UrdfConverterCfg): """URDF file to spawn asset from. It uses the :class:`UrdfConverter` class to create a USD file from URDF and spawns the imported USD file. See :meth:`spawn_from_urdf` for more information. .. note:: The configuration parameters include various properties. If not `None`, these properties are modified on the spawned prim in a nested manner. """ func: Callable = from_files.spawn_from_urdf """ Spawning ground plane. """ @configclass class GroundPlaneCfg(SpawnerCfg): """Create a ground plane prim. This uses the USD for the standard grid-world ground plane from Isaac Sim by default. """ func: Callable = from_files.spawn_ground_plane usd_path: str = f"{ISAAC_NUCLEUS_DIR}/Environments/Grid/default_environment.usd" """Path to the USD file to spawn asset from. Defaults to the grid-world ground plane.""" color: tuple[float, float, float] | None = (0.0, 0.0, 0.0) """The color of the ground plane. Defaults to (0.0, 0.0, 0.0). If None, then the color remains unchanged. """ size: tuple[float, float] = (100.0, 100.0) """The size of the ground plane. Defaults to 100 m x 100 m.""" physics_material: materials.RigidBodyMaterialCfg = materials.RigidBodyMaterialCfg() """Physics material properties. Defaults to the default rigid body material."""
3,786
Python
31.646551
107
0.710512
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/materials/visual_materials_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from omni.isaac.orbit.utils import configclass from . import visual_materials @configclass class VisualMaterialCfg: """Configuration parameters for creating a visual material.""" func: Callable = MISSING """The function to use for creating the material.""" @configclass class PreviewSurfaceCfg(VisualMaterialCfg): """Configuration parameters for creating a preview surface. See :meth:`spawn_preview_surface` for more information. """ func: Callable = visual_materials.spawn_preview_surface diffuse_color: tuple[float, float, float] = (0.18, 0.18, 0.18) """The RGB diffusion color. This is the base color of the surface. Defaults to a dark gray.""" emissive_color: tuple[float, float, float] = (0.0, 0.0, 0.0) """The RGB emission component of the surface. Defaults to black.""" roughness: float = 0.5 """The roughness for specular lobe. Ranges from 0 (smooth) to 1 (rough). Defaults to 0.5.""" metallic: float = 0.0 """The metallic component. Ranges from 0 (dielectric) to 1 (metal). Defaults to 0.""" opacity: float = 1.0 """The opacity of the surface. Ranges from 0 (transparent) to 1 (opaque). Defaults to 1. Note: Opacity only affects the surface's appearance during interactive rendering. """ @configclass class MdlFileCfg(VisualMaterialCfg): """Configuration parameters for loading an MDL material from a file. See :meth:`spawn_from_mdl_file` for more information. """ func: Callable = visual_materials.spawn_from_mdl_file mdl_path: str = MISSING """The path to the MDL material. NVIDIA Omniverse provides various MDL materials in the NVIDIA Nucleus. To use these materials, you can set the path of the material in the nucleus directory using the ``{NVIDIA_NUCLEUS_DIR}`` variable. This is internally resolved to the path of the NVIDIA Nucleus directory on the host machine through the attribute :attr:`omni.isaac.orbit.utils.assets.NVIDIA_NUCLEUS_DIR`. For example, to use the "Aluminum_Anodized" material, you can set the path to: ``{NVIDIA_NUCLEUS_DIR}/Materials/Base/Metals/Aluminum_Anodized.mdl``. """ project_uvw: bool | None = None """Whether to project the UVW coordinates of the material. Defaults to None. If None, then the default setting in the MDL material will be used. """ albedo_brightness: float | None = None """Multiplier for the diffuse color of the material. Defaults to None. If None, then the default setting in the MDL material will be used. """ texture_scale: tuple[float, float] | None = None """The scale of the texture. Defaults to None. If None, then the default setting in the MDL material will be used. """ @configclass class GlassMdlCfg(VisualMaterialCfg): """Configuration parameters for loading a glass MDL material. This is a convenience class for loading a glass MDL material. For more information on glass materials, see the `documentation <https://docs.omniverse.nvidia.com/materials-and-rendering/latest/materials.html#omniglass>`__. .. note:: The default values are taken from the glass material in the NVIDIA Nucleus. """ func: Callable = visual_materials.spawn_from_mdl_file mdl_path: str = "OmniGlass.mdl" """The path to the MDL material. Defaults to the glass material in the NVIDIA Nucleus.""" glass_color: tuple[float, float, float] = (1.0, 1.0, 1.0) """The RGB color or tint of the glass. Defaults to white.""" frosting_roughness: float = 0.0 """The amount of reflectivity of the surface. Ranges from 0 (perfectly clear) to 1 (frosted). Defaults to 0.""" thin_walled: bool = False """Whether to perform thin-walled refraction. Defaults to False.""" glass_ior: float = 1.491 """The incidence of refraction to control how much light is bent when passing through the glass. Defaults to 1.491, which is the IOR of glass. """
4,200
Python
36.176991
139
0.703571
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/materials/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for spawners that spawn USD-based and PhysX-based materials. `Materials`_ are used to define the appearance and physical properties of objects in the simulation. In Omniverse, they are defined using NVIDIA's `Material Definition Language (MDL)`_. MDL is based on the physically-based rendering (PBR) model, which is a set of equations that describe how light interacts with a surface. The PBR model is used to create realistic-looking materials. While MDL is primarily used for defining the appearance of objects, it can be extended to define the physical properties of objects. For example, the friction and restitution coefficients of a rubber material. A `physics material`_ can be assigned to a physics object to define its physical properties. There are different kinds of physics materials, such as rigid body material, deformable material, and fluid material. In order to apply a material to an object, we "bind" the geometry of the object to the material. For this, we use the `USD Material Binding API`_. The material binding API takes in the path to the geometry and the path to the material, and binds them together. For physics material, the material is bound to the physics object with the 'physics' purpose. When parsing physics material properties on an object, the following priority is used: 1. Material binding with a 'physics' purpose (physics material) 2. Material binding with no purpose (visual material) 3. Material binding with a 'physics' purpose on the `Physics Scene`_ prim. 4. Default values of material properties inside PhysX. Usage: .. code-block:: python import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils # create a visual material visual_material_cfg = sim_utils.GlassMdlCfg(glass_ior=1.0, thin_walled=True) visual_material_cfg.func("/World/Looks/glassMaterial", visual_material_cfg) # create a mesh prim cube_cfg = sim_utils.CubeCfg(size=[1.0, 1.0, 1.0]) cube_cfg.func("/World/Primitives/Cube", cube_cfg) # bind the cube to the visual material sim_utils.bind_visual_material("/World/Primitives/Cube", "/World/Looks/glassMaterial") .. _Material Definition Language (MDL): https://raytracing-docs.nvidia.com/mdl/introduction/index.html#mdl_introduction# .. _Materials: https://docs.omniverse.nvidia.com/materials-and-rendering/latest/materials.html .. _physics material: https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/simulation-control/physics-settings.html#physics-materials .. _USD Material Binding API: https://openusd.org/dev/api/class_usd_shade_material_binding_a_p_i.html .. _Physics Scene: https://openusd.org/dev/api/usd_physics_page_front.html """ from .physics_materials import spawn_rigid_body_material from .physics_materials_cfg import PhysicsMaterialCfg, RigidBodyMaterialCfg from .visual_materials import spawn_from_mdl_file, spawn_preview_surface from .visual_materials_cfg import GlassMdlCfg, MdlFileCfg, PreviewSurfaceCfg, VisualMaterialCfg
3,185
Python
51.229507
144
0.767347
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/materials/physics_materials.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils from pxr import PhysxSchema, Usd, UsdPhysics, UsdShade from omni.isaac.orbit.sim.utils import clone, safe_set_attribute_on_usd_schema if TYPE_CHECKING: from . import physics_materials_cfg @clone def spawn_rigid_body_material(prim_path: str, cfg: physics_materials_cfg.RigidBodyMaterialCfg) -> Usd.Prim: """Create material with rigid-body physics properties. Rigid body materials are used to define the physical properties to meshes of a rigid body. These include the friction, restitution, and their respective combination modes. For more information on rigid body material, please refer to the `documentation on PxMaterial <https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/_build/physx/latest/class_px_material.html>`_. .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration for the physics material. Returns: The spawned rigid body material prim. Raises: ValueError: When a prim already exists at the specified prim path and is not a material. """ # create material prim if no prim exists if not prim_utils.is_prim_path_valid(prim_path): _ = UsdShade.Material.Define(stage_utils.get_current_stage(), prim_path) # obtain prim prim = prim_utils.get_prim_at_path(prim_path) # check if prim is a material if not prim.IsA(UsdShade.Material): raise ValueError(f"A prim already exists at path: '{prim_path}' but is not a material.") # retrieve the USD rigid-body api usd_physics_material_api = UsdPhysics.MaterialAPI(prim) if not usd_physics_material_api: usd_physics_material_api = UsdPhysics.MaterialAPI.Apply(prim) # retrieve the collision api physx_material_api = PhysxSchema.PhysxMaterialAPI(prim) if not physx_material_api: physx_material_api = PhysxSchema.PhysxMaterialAPI.Apply(prim) # convert to dict cfg = cfg.to_dict() del cfg["func"] # set into USD API for attr_name in ["static_friction", "dynamic_friction", "restitution"]: value = cfg.pop(attr_name, None) safe_set_attribute_on_usd_schema(usd_physics_material_api, attr_name, value, camel_case=True) # set into PhysX API for attr_name, value in cfg.items(): safe_set_attribute_on_usd_schema(physx_material_api, attr_name, value, camel_case=True) # return the prim return prim
3,080
Python
40.635135
174
0.713312
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/materials/visual_materials.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import omni.isaac.core.utils.prims as prim_utils import omni.kit.commands from pxr import Usd from omni.isaac.orbit.sim.utils import clone, safe_set_attribute_on_usd_prim from omni.isaac.orbit.utils.assets import NVIDIA_NUCLEUS_DIR if TYPE_CHECKING: from . import visual_materials_cfg @clone def spawn_preview_surface(prim_path: str, cfg: visual_materials_cfg.PreviewSurfaceCfg) -> Usd.Prim: """Create a preview surface prim and override the settings with the given config. A preview surface is a physically-based surface that handles simple shaders while supporting both *specular* and *metallic* workflows. All color inputs are in linear color space (RGB). For more information, see the `documentation <https://openusd.org/release/spec_usdpreviewsurface.html>`__. The function calls the USD command `CreatePreviewSurfaceMaterialPrim`_ to create the prim. .. _CreatePreviewSurfaceMaterialPrim: https://docs.omniverse.nvidia.com/kit/docs/omni.usd/latest/omni.usd.commands/omni.usd.commands.CreatePreviewSurfaceMaterialPrimCommand.html .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn material if it doesn't exist. if not prim_utils.is_prim_path_valid(prim_path): omni.kit.commands.execute("CreatePreviewSurfaceMaterialPrim", mtl_path=prim_path, select_new_prim=False) else: raise ValueError(f"A prim already exists at path: '{prim_path}'.") # obtain prim prim = prim_utils.get_prim_at_path(f"{prim_path}/Shader") # apply properties cfg = cfg.to_dict() del cfg["func"] for attr_name, attr_value in cfg.items(): safe_set_attribute_on_usd_prim(prim, f"inputs:{attr_name}", attr_value, camel_case=True) # return prim return prim @clone def spawn_from_mdl_file(prim_path: str, cfg: visual_materials_cfg.MdlMaterialCfg) -> Usd.Prim: """Load a material from its MDL file and override the settings with the given config. NVIDIA's `Material Definition Language (MDL) <https://www.nvidia.com/en-us/design-visualization/technologies/material-definition-language/>`__ is a language for defining physically-based materials. The MDL file format is a binary format that can be loaded by Omniverse and other applications such as Adobe Substance Designer. To learn more about MDL, see the `documentation <https://docs.omniverse.nvidia.com/materials-and-rendering/latest/materials.html>`_. The function calls the USD command `CreateMdlMaterialPrim`_ to create the prim. .. _CreateMdlMaterialPrim: https://docs.omniverse.nvidia.com/kit/docs/omni.usd/latest/omni.usd.commands/omni.usd.commands.CreateMdlMaterialPrimCommand.html .. note:: This function is decorated with :func:`clone` that resolves prim path into list of paths if the input prim path is a regex pattern. This is done to support spawning multiple assets from a single and cloning the USD prim at the given path expression. Args: prim_path: The prim path or pattern to spawn the asset at. If the prim path is a regex pattern, then the asset is spawned at all the matching prim paths. cfg: The configuration instance. Returns: The created prim. Raises: ValueError: If a prim already exists at the given path. """ # spawn material if it doesn't exist. if not prim_utils.is_prim_path_valid(prim_path): # extract material name from path material_name = cfg.mdl_path.split("/")[-1].split(".")[0] omni.kit.commands.execute( "CreateMdlMaterialPrim", mtl_url=cfg.mdl_path.format(NVIDIA_NUCLEUS_DIR=NVIDIA_NUCLEUS_DIR), mtl_name=material_name, mtl_path=prim_path, select_new_prim=False, ) else: raise ValueError(f"A prim already exists at path: '{prim_path}'.") # obtain prim prim = prim_utils.get_prim_at_path(f"{prim_path}/Shader") # apply properties cfg = cfg.to_dict() del cfg["func"] del cfg["mdl_path"] for attr_name, attr_value in cfg.items(): safe_set_attribute_on_usd_prim(prim, f"inputs:{attr_name}", attr_value, camel_case=False) # return prim return prim
4,978
Python
41.555555
181
0.702893
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/materials/physics_materials_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass from . import physics_materials @configclass class PhysicsMaterialCfg: """Configuration parameters for creating a physics material. Physics material are PhysX schemas that can be applied to a USD material prim to define the physical properties related to the material. For example, the friction coefficient, restitution coefficient, etc. For more information on physics material, please refer to the `PhysX documentation <https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/_build/physx/latest/class_px_base_material.html>`_. """ func: Callable = MISSING """Function to use for creating the material.""" @configclass class RigidBodyMaterialCfg(PhysicsMaterialCfg): """Physics material parameters for rigid bodies. See :meth:`spawn_rigid_body_material` for more information. Note: The default values are the `default values used by PhysX 5 <https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/rigid-bodies.html#rigid-body-materials>`_. """ func: Callable = physics_materials.spawn_rigid_body_material static_friction: float = 0.5 """The static friction coefficient. Defaults to 0.5.""" dynamic_friction: float = 0.5 """The dynamic friction coefficient. Defaults to 0.5.""" restitution: float = 0.0 """The restitution coefficient. Defaults to 0.0.""" improve_patch_friction: bool = True """Whether to enable patch friction. Defaults to True.""" friction_combine_mode: Literal["average", "min", "multiply", "max"] = "average" """Determines the way friction will be combined during collisions. Defaults to `"average"`. .. attention:: When two physics materials with different combine modes collide, the combine mode with the higher priority will be used. The priority order is provided `here <https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/_build/physx/latest/struct_px_combine_mode.html#pxcombinemode>`_. """ restitution_combine_mode: Literal["average", "min", "multiply", "max"] = "average" """Determines the way restitution coefficient will be combined during collisions. Defaults to `"average"`. .. attention:: When two physics materials with different combine modes collide, the combine mode with the higher priority will be used. The priority order is provided `here <https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/_build/physx/latest/struct_px_combine_mode.html#pxcombinemode>`_. """ compliant_contact_stiffness: float = 0.0 """Spring stiffness for a compliant contact model using implicit springs. Defaults to 0.0. A higher stiffness results in behavior closer to a rigid contact. The compliant contact model is only enabled if the stiffness is larger than 0. """ compliant_contact_damping: float = 0.0 """Damping coefficient for a compliant contact model using implicit springs. Defaults to 0.0. Irrelevant if compliant contacts are disabled when :obj:`compliant_contact_stiffness` is set to zero and rigid contacts are active. """
3,409
Python
37.314606
130
0.723379
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing converters for converting various file types to USD. In order to support direct loading of various file types into Omniverse, we provide a set of converters that can convert the file into a USD file. The converters are implemented as sub-classes of the :class:`AssetConverterBase` class. The following converters are currently supported: * :class:`UrdfConverter`: Converts a URDF file into a USD file. * :class:`MeshConverter`: Converts a mesh file into a USD file. This supports OBJ, STL and FBX files. """ from .asset_converter_base import AssetConverterBase from .asset_converter_base_cfg import AssetConverterBaseCfg from .mesh_converter import MeshConverter from .mesh_converter_cfg import MeshConverterCfg from .urdf_converter import UrdfConverter from .urdf_converter_cfg import UrdfConverterCfg
957
Python
35.846152
101
0.798328
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/asset_converter_base_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.utils import configclass @configclass class AssetConverterBaseCfg: """The base configuration class for asset converters.""" asset_path: str = MISSING """The absolute path to the asset file to convert into USD.""" usd_dir: str | None = None """The output directory path to store the generated USD file. Defaults to None. If None, it is resolved as ``/tmp/Orbit/usd_{date}_{time}_{random}``, where the parameters in braces are runtime generated. """ usd_file_name: str | None = None """The name of the generated usd file. Defaults to None. If None, it is resolved from the asset file name. For example, if the asset file name is ``"my_asset.urdf"``, then the generated USD file name is ``"my_asset.usd"``. If the providing file name does not end with ".usd" or ".usda", then the extension ".usd" is appended to the file name. """ force_usd_conversion: bool = False """Force the conversion of the asset file to usd. Defaults to False. If True, then the USD file is always generated. It will overwrite the existing USD file if it exists. """ make_instanceable: bool = True """Make the generated USD file instanceable. Defaults to True. Note: Instancing helps reduce the memory footprint of the asset when multiple copies of the asset are used in the scene. For more information, please check the USD documentation on `scene-graph instancing <https://openusd.org/dev/api/_usd__page__scenegraph_instancing.html>`_. """
1,756
Python
32.788461
105
0.694761
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/asset_converter_base.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import abc import hashlib import json import os import pathlib import random from datetime import datetime from omni.isaac.orbit.sim.converters.asset_converter_base_cfg import AssetConverterBaseCfg from omni.isaac.orbit.utils.assets import check_file_path from omni.isaac.orbit.utils.io import dump_yaml class AssetConverterBase(abc.ABC): """Base class for converting an asset file from different formats into USD format. This class provides a common interface for converting an asset file into USD. It does not provide any implementation for the conversion. The derived classes must implement the :meth:`_convert_asset` method to provide the actual conversion. The file conversion is lazy if the output directory (:obj:`AssetConverterBaseCfg.usd_dir`) is provided. In the lazy conversion, the USD file is re-generated only if: * The asset file is modified. * The configuration parameters are modified. * The USD file does not exist. To override this behavior to force conversion, the flag :obj:`AssetConverterBaseCfg.force_usd_conversion` can be set to True. When no output directory is defined, lazy conversion is deactivated and the generated USD file is stored in folder ``/tmp/Orbit/usd_{date}_{time}_{random}``, where the parameters in braces are generated at runtime. The random identifiers help avoid a race condition where two simultaneously triggered conversions try to use the same directory for reading/writing the generated files. .. note:: Changes to the parameters :obj:`AssetConverterBaseCfg.asset_path`, :obj:`AssetConverterBaseCfg.usd_dir`, and :obj:`AssetConverterBaseCfg.usd_file_name` are not considered as modifications in the configuration instance that trigger USD file re-generation. """ def __init__(self, cfg: AssetConverterBaseCfg): """Initializes the class. Args: cfg: The configuration instance for converting an asset file to USD format. Raises: ValueError: When provided asset file does not exist. """ # check if the asset file exists if not check_file_path(cfg.asset_path): raise ValueError(f"The asset path does not exist: {cfg.asset_path}") # save the inputs self.cfg = cfg # resolve USD directory name if cfg.usd_dir is None: # a folder in "/tmp/Orbit" by the name: usd_{date}_{time}_{random} time_tag = datetime.now().strftime("%Y%m%d_%H%M%S") self._usd_dir = f"/tmp/Orbit/usd_{time_tag}_{random.randrange(10000)}" else: self._usd_dir = cfg.usd_dir # resolve the file name from asset file name if not provided if cfg.usd_file_name is None: usd_file_name = pathlib.PurePath(cfg.asset_path).stem else: usd_file_name = cfg.usd_file_name # add USD extension if not provided if not (usd_file_name.endswith(".usd") or usd_file_name.endswith(".usda")): self._usd_file_name = usd_file_name + ".usd" else: self._usd_file_name = usd_file_name # create the USD directory os.makedirs(self.usd_dir, exist_ok=True) # check if usd files exist self._usd_file_exists = os.path.isfile(self.usd_path) # path to read/write asset hash file self._dest_hash_path = os.path.join(self.usd_dir, ".asset_hash") # create asset hash to check if the asset has changed self._asset_hash = self._config_to_hash(cfg) # read the saved hash try: with open(self._dest_hash_path) as f: existing_asset_hash = f.readline() self._is_same_asset = existing_asset_hash == self._asset_hash except FileNotFoundError: self._is_same_asset = False # convert the asset to USD if the hash is different or USD file does not exist if cfg.force_usd_conversion or not self._usd_file_exists or not self._is_same_asset: # write the updated hash with open(self._dest_hash_path, "w") as f: f.write(self._asset_hash) # convert the asset to USD self._convert_asset(cfg) # dump the configuration to a file dump_yaml(os.path.join(self.usd_dir, "config.yaml"), cfg.to_dict()) # add comment to top of the saved config file with information about the converter current_date = datetime.now().strftime("%Y-%m-%d") current_time = datetime.now().strftime("%H:%M:%S") generation_comment = ( f"##\n# Generated by {self.__class__.__name__} on {current_date} at {current_time}.\n##\n" ) with open(os.path.join(self.usd_dir, "config.yaml"), "a") as f: f.write(generation_comment) """ Properties. """ @property def usd_dir(self) -> str: """The absolute path to the directory where the generated USD files are stored.""" return self._usd_dir @property def usd_file_name(self) -> str: """The file name of the generated USD file.""" return self._usd_file_name @property def usd_path(self) -> str: """The absolute path to the generated USD file.""" return os.path.join(self.usd_dir, self.usd_file_name) @property def usd_instanceable_meshes_path(self) -> str: """The relative path to the USD file with meshes. The path is with respect to the USD directory :attr:`usd_dir`. This is to ensure that the mesh references in the generated USD file are resolved relatively. Otherwise, it becomes difficult to move the USD asset to a different location. """ return os.path.join(".", "Props", "instanceable_meshes.usd") """ Implementation specifics. """ @abc.abstractmethod def _convert_asset(self, cfg: AssetConverterBaseCfg): """Converts the asset file to USD. Args: cfg: The configuration instance for the input asset to USD conversion. """ raise NotImplementedError() """ Private helpers. """ @staticmethod def _config_to_hash(cfg: AssetConverterBaseCfg) -> str: """Converts the configuration object and asset file to an MD5 hash of a string. .. warning:: It only checks the main asset file (:attr:`cfg.asset_path`). Args: config : The asset converter configuration object. Returns: An MD5 hash of a string. """ # convert to dict and remove path related info config_dic = cfg.to_dict() _ = config_dic.pop("asset_path") _ = config_dic.pop("usd_dir") _ = config_dic.pop("usd_file_name") # convert config dic to bytes config_bytes = json.dumps(config_dic).encode() # hash config md5 = hashlib.md5() md5.update(config_bytes) # read the asset file to observe changes with open(cfg.asset_path, "rb") as f: while True: # read 64kb chunks to avoid memory issues for the large files! data = f.read(65536) if not data: break md5.update(data) # return the hash return md5.hexdigest()
7,541
Python
36.899497
121
0.626044
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/mesh_converter_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.orbit.sim.converters.asset_converter_base_cfg import AssetConverterBaseCfg from omni.isaac.orbit.sim.schemas import schemas_cfg from omni.isaac.orbit.utils import configclass @configclass class MeshConverterCfg(AssetConverterBaseCfg): """The configuration class for MeshConverter.""" mass_props: schemas_cfg.MassPropertiesCfg = None """Mass properties to apply to the USD. Defaults to None. Note: If None, then no mass properties will be added. """ rigid_props: schemas_cfg.RigidBodyPropertiesCfg = None """Rigid body properties to apply to the USD. Defaults to None. Note: If None, then no rigid body properties will be added. """ collision_props: schemas_cfg.CollisionPropertiesCfg = None """Collision properties to apply to the USD. Defaults to None. Note: If None, then no collision properties will be added. """ collision_approximation: str = "convexDecomposition" """Collision approximation method to use. Defaults to "convexDecomposition". Valid options are: "convexDecomposition", "convexHull", "boundingCube", "boundingSphere", "meshSimplification", or "none" "none" causes no collision mesh to be added. """
1,408
Python
28.978723
90
0.71946
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/mesh_converter.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import asyncio import os import omni import omni.kit.commands import omni.usd from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf, Usd, UsdGeom, UsdPhysics, UsdUtils from omni.isaac.orbit.sim.converters.asset_converter_base import AssetConverterBase from omni.isaac.orbit.sim.converters.mesh_converter_cfg import MeshConverterCfg from omni.isaac.orbit.sim.schemas import schemas from omni.isaac.orbit.sim.utils import export_prim_to_file class MeshConverter(AssetConverterBase): """Converter for a mesh file in OBJ / STL / FBX format to a USD file. This class wraps around the `omni.kit.asset_converter`_ extension to provide a lazy implementation for mesh to USD conversion. It stores the output USD file in an instanceable format since that is what is typically used in all learning related applications. To make the asset instanceable, we must follow a certain structure dictated by how USD scene-graph instancing and physics work. The rigid body component must be added to each instance and not the referenced asset (i.e. the prototype prim itself). This is because the rigid body component defines properties that are specific to each instance and cannot be shared under the referenced asset. For more information, please check the `documentation <https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/rigid-bodies.html#instancing-rigid-bodies>`_. Due to the above, we follow the following structure: * ``{prim_path}`` - The root prim that is an Xform with the rigid body and mass APIs if configured. * ``{prim_path}/geometry`` - The prim that contains the mesh and optionally the materials if configured. If instancing is enabled, this prim will be an instanceable reference to the prototype prim. .. _omni.kit.asset_converter: https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-converter.html .. caution:: When converting STL files, Z-up convention is assumed, even though this is not the default for many CAD export programs. Asset orientation convention can either be modified directly in the CAD program's export process or an offset can be added within the config in Orbit. """ cfg: MeshConverterCfg """The configuration instance for mesh to USD conversion.""" def __init__(self, cfg: MeshConverterCfg): """Initializes the class. Args: cfg: The configuration instance for mesh to USD conversion. """ super().__init__(cfg=cfg) """ Implementation specific methods. """ def _convert_asset(self, cfg: MeshConverterCfg): """Generate USD from OBJ, STL or FBX. It stores the asset in the following format: /file_name (default prim) |- /geometry <- Made instanceable if requested |- /Looks |- /mesh Args: cfg: The configuration for conversion of mesh to USD. Raises: RuntimeError: If the conversion using the Omniverse asset converter fails. """ # resolve mesh name and format mesh_file_basename, mesh_file_format = os.path.basename(cfg.asset_path).split(".") mesh_file_format = mesh_file_format.lower() # Convert USD status = asyncio.get_event_loop().run_until_complete( self._convert_mesh_to_usd(in_file=cfg.asset_path, out_file=self.usd_path) ) if not status: raise RuntimeError(f"Failed to convert asset: {cfg.asset_path}! Please check the logs for more details.") # Open converted USD stage # note: This opens a new stage and does not use the stage created earlier by the user # create a new stage stage = Usd.Stage.Open(self.usd_path) # add USD to stage cache stage_id = UsdUtils.StageCache.Get().Insert(stage) # need to make kwargs for compatibility with 2023 stage_kwargs = {"stage": stage} stage_or_context_kwargs = {"stage_or_context": stage} # FIXME: we need to hack this into command because Kit 105 has a bug. from omni.usd.commands import MovePrimCommand MovePrimCommand._selection = None # type: ignore # Set stage up-axis to Z # note: later we need to rotate the mesh so that it is Z-up in the world UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.z) # Move all meshes to underneath a new Xform so that we can make it instanceable later if requested # Get the default prim (which is the root prim) -- "/World" old_xform_prim = stage.GetDefaultPrim() # Create a path called "/{mesh_file_basename}/geometry" and move the mesh to it new_xform_prim = stage.DefinePrim(f"/{mesh_file_basename}", "Xform") geom_undef_prim = stage.DefinePrim(f"{new_xform_prim.GetPath()}/geometry") # Move Looks to underneath new Xform omni.kit.commands.execute( "MovePrim", path_from=f"{old_xform_prim.GetPath()}/Looks", path_to=f"{geom_undef_prim.GetPath()}/Looks", destructive=True, **stage_or_context_kwargs, ) # Move all meshes to underneath new Xform for child_mesh_prim in old_xform_prim.GetChildren(): # Get mesh prim path old_child_mesh_prim_path = child_mesh_prim.GetPath().pathString new_child_mesh_prim_path = f"{geom_undef_prim.GetPath()}/{old_child_mesh_prim_path.split('/')[-1]}" # Move mesh to underneath new Xform omni.kit.commands.execute( "MovePrim", path_from=old_child_mesh_prim_path, path_to=new_child_mesh_prim_path, destructive=True, **stage_or_context_kwargs, ) # Apply default Xform rotation to mesh omni.kit.commands.execute( "CreateDefaultXformOnPrimCommand", prim_path=new_child_mesh_prim_path, **stage_kwargs, ) # Get new mesh prim child_mesh_prim = stage.GetPrimAtPath(new_child_mesh_prim_path) # Rotate mesh so that it is Z-up in the world attr_rotate = child_mesh_prim.GetAttribute("xformOp:orient") attr_rotate.Set(Gf.Quatd(0.5, 0.5, 0.5, 0.5)) # Apply collider properties to mesh if cfg.collision_props is not None: # -- Collision approximation to mesh # TODO: https://github.com/isaac-orbit/orbit/issues/163 Move this to a new Schema mesh_collision_api = UsdPhysics.MeshCollisionAPI.Apply(child_mesh_prim) mesh_collision_api.GetApproximationAttr().Set(cfg.collision_approximation) # -- Collider properties such as offset, scale, etc. schemas.define_collision_properties( prim_path=child_mesh_prim.GetPath(), cfg=cfg.collision_props, stage=stage ) # Delete the old Xform and make the new Xform the default prim stage.SetDefaultPrim(new_xform_prim) omni.kit.commands.execute("DeletePrims", paths=[old_xform_prim.GetPath().pathString], stage=stage) # Handle instanceable # Create a new Xform prim that will be the prototype prim if cfg.make_instanceable: # Export Xform to a file so we can reference it from all instances export_prim_to_file( path=os.path.join(self.usd_dir, self.usd_instanceable_meshes_path), source_prim_path=geom_undef_prim.GetPath(), stage=stage, ) # Delete the original prim that will now be a reference geom_undef_prim_path = geom_undef_prim.GetPath().pathString omni.kit.commands.execute("DeletePrims", paths=[geom_undef_prim_path], stage=stage) # Update references to exported Xform and make it instanceable geom_undef_prim = stage.DefinePrim(geom_undef_prim_path) geom_undef_prim.GetReferences().AddReference( self.usd_instanceable_meshes_path, primPath=geom_undef_prim_path ) geom_undef_prim.SetInstanceable(True) # Apply mass and rigid body properties after everything else # Properties are applied to the top level prim to avoid the case where all instances of this # asset unintentionally share the same rigid body properties # apply mass properties if cfg.mass_props is not None: schemas.define_mass_properties(prim_path=new_xform_prim.GetPath(), cfg=cfg.mass_props, stage=stage) # apply rigid body properties if cfg.rigid_props is not None: schemas.define_rigid_body_properties(prim_path=new_xform_prim.GetPath(), cfg=cfg.rigid_props, stage=stage) # Save changes to USD stage stage.Save() if stage_id is not None: UsdUtils.StageCache.Get().Erase(stage_id) """ Helper methods. """ @staticmethod async def _convert_mesh_to_usd(in_file: str, out_file: str, load_materials: bool = True) -> bool: """Convert mesh from supported file types to USD. This function uses the Omniverse Asset Converter extension to convert a mesh file to USD. It is an asynchronous function and should be called using `asyncio.get_event_loop().run_until_complete()`. The converted asset is stored in the USD format in the specified output file. The USD file has Y-up axis and is scaled to meters. The asset hierarchy is arranged as follows: .. code-block:: none /World (default prim) |- /Looks |- /Mesh Args: in_file: The file to convert. out_file: The path to store the output file. load_materials: Set to True to enable attaching materials defined in the input file to the generated USD mesh. Defaults to True. Returns: True if the conversion succeeds. """ enable_extension("omni.kit.asset_converter") enable_extension("omni.isaac.unit_converter") import omni.kit.asset_converter from omni.isaac.unit_converter.unit_conversion_utils import set_stage_meters_per_unit # Create converter context converter_context = omni.kit.asset_converter.AssetConverterContext() # Set up converter settings # Don't import/export materials converter_context.ignore_materials = not load_materials converter_context.ignore_animations = True converter_context.ignore_camera = True converter_context.ignore_light = True # Merge all meshes into one converter_context.merge_all_meshes = True # Sets world units to meters, this will also scale asset if it's centimeters model. # This does not work right now :(, so we need to scale the mesh manually converter_context.use_meter_as_world_unit = True converter_context.baking_scales = True # Uses double precision for all transform ops. converter_context.use_double_precision_to_usd_transform_op = True # Create converter task instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(in_file, out_file, None, converter_context) # Start conversion task and wait for it to finish success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break # Open converted USD stage stage = Usd.Stage.Open(out_file) # Set stage units to 1.0 set_stage_meters_per_unit(stage, 1.0) # Save changes to USD stage stage.Save() return success
12,085
Python
43.929368
164
0.647
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/urdf_converter.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import os import omni.kit.commands import omni.usd from omni.isaac.core.utils.extensions import enable_extension from pxr import Usd from .asset_converter_base import AssetConverterBase from .urdf_converter_cfg import UrdfConverterCfg _DRIVE_TYPE = { "none": 0, "position": 1, "velocity": 2, } """Mapping from drive type name to URDF importer drive number.""" _NORMALS_DIVISION = { "catmullClark": 0, "loop": 1, "bilinear": 2, "none": 3, } """Mapping from normals division name to urdf importer normals division number.""" class UrdfConverter(AssetConverterBase): """Converter for a URDF description file to a USD file. This class wraps around the `omni.isaac.urdf_importer`_ extension to provide a lazy implementation for URDF to USD conversion. It stores the output USD file in an instanceable format since that is what is typically used in all learning related applications. .. caution:: The current lazy conversion implementation does not automatically trigger USD generation if only the mesh files used by the URDF are modified. To force generation, either set :obj:`AssetConverterBaseCfg.force_usd_conversion` to True or delete the output directory. .. note:: From Isaac Sim 2023.1 onwards, the extension name changed from ``omni.isaac.urdf`` to ``omni.importer.urdf``. This converter class automatically detects the version of Isaac Sim and uses the appropriate extension. The new extension supports a custom XML tag``"dont_collapse"`` for joints. Setting this parameter to true in the URDF joint tag prevents the child link from collapsing when the associated joint type is "fixed". .. _omni.isaac.urdf_importer: https://docs.omniverse.nvidia.com/isaacsim/latest/ext_omni_isaac_urdf.html """ cfg: UrdfConverterCfg """The configuration instance for URDF to USD conversion.""" def __init__(self, cfg: UrdfConverterCfg): """Initializes the class. Args: cfg: The configuration instance for URDF to USD conversion. """ super().__init__(cfg=cfg) """ Implementation specific methods. """ def _convert_asset(self, cfg: UrdfConverterCfg): """Calls underlying Omniverse command to convert URDF to USD. Args: cfg: The URDF conversion configuration. """ import_config = self._get_urdf_import_config(cfg) omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=cfg.asset_path, import_config=import_config, dest_path=self.usd_path, ) # fix the issue that material paths are not relative if self.cfg.make_instanceable: instanced_usd_path = os.path.join(self.usd_dir, self.usd_instanceable_meshes_path) stage = Usd.Stage.Open(instanced_usd_path) # resolve all paths relative to layer path source_layer = stage.GetRootLayer() omni.usd.resolve_paths(source_layer.identifier, source_layer.identifier) stage.Save() # fix the issue that material paths are not relative # note: This issue seems to have popped up in Isaac Sim 2023.1.1 stage = Usd.Stage.Open(self.usd_path) # resolve all paths relative to layer path source_layer = stage.GetRootLayer() omni.usd.resolve_paths(source_layer.identifier, source_layer.identifier) stage.Save() """ Helper methods. """ def _get_urdf_import_config(self, cfg: UrdfConverterCfg) -> omni.importer.urdf.ImportConfig: """Create and fill URDF ImportConfig with desired settings Args: cfg: The URDF conversion configuration. Returns: The constructed ``ImportConfig`` object containing the desired settings. """ # Enable urdf extension enable_extension("omni.importer.urdf") from omni.importer.urdf import _urdf as omni_urdf import_config = omni_urdf.ImportConfig() # set the unit scaling factor, 1.0 means meters, 100.0 means cm import_config.set_distance_scale(1.0) # set imported robot as default prim import_config.set_make_default_prim(True) # add a physics scene to the stage on import if none exists import_config.set_create_physics_scene(False) # -- instancing settings # meshes will be placed in a separate usd file import_config.set_make_instanceable(cfg.make_instanceable) import_config.set_instanceable_usd_path(self.usd_instanceable_meshes_path) # -- asset settings # default density used for links, use 0 to auto-compute import_config.set_density(cfg.link_density) # import inertia tensor from urdf, if it is not specified in urdf it will import as identity import_config.set_import_inertia_tensor(cfg.import_inertia_tensor) # decompose a convex mesh into smaller pieces for a closer fit import_config.set_convex_decomp(cfg.convex_decompose_mesh) import_config.set_subdivision_scheme(_NORMALS_DIVISION["bilinear"]) # -- physics settings # create fix joint for base link import_config.set_fix_base(cfg.fix_base) # consolidating links that are connected by fixed joints import_config.set_merge_fixed_joints(cfg.merge_fixed_joints) # self collisions between links in the articulation import_config.set_self_collision(cfg.self_collision) # default drive type used for joints import_config.set_default_drive_type(_DRIVE_TYPE[cfg.default_drive_type]) # default proportional gains import_config.set_default_drive_strength(cfg.default_drive_stiffness) # default derivative gains import_config.set_default_position_drive_damping(cfg.default_drive_damping) return import_config
6,114
Python
37.21875
108
0.67599
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/converters/urdf_converter_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.sim.converters.asset_converter_base_cfg import AssetConverterBaseCfg from omni.isaac.orbit.utils import configclass @configclass class UrdfConverterCfg(AssetConverterBaseCfg): """The configuration class for UrdfConverter.""" link_density = 0.0 """Default density used for links. Defaults to 0. This setting is only effective if ``"inertial"`` properties are missing in the URDF. """ import_inertia_tensor: bool = True """Import the inertia tensor from urdf. Defaults to True. If the ``"inertial"`` tag is missing, then it is imported as an identity. """ convex_decompose_mesh = False """Decompose a convex mesh into smaller pieces for a closer fit. Defaults to False.""" fix_base: bool = MISSING """Create a fix joint to the root/base link. Defaults to True.""" merge_fixed_joints: bool = False """Consolidate links that are connected by fixed joints. Defaults to False.""" self_collision: bool = False """Activate self-collisions between links of the articulation. Defaults to False.""" default_drive_type: Literal["none", "position", "velocity"] = "none" """The drive type used for joints. Defaults to ``"none"``. The drive type dictates the loaded joint PD gains and USD attributes for joint control: * ``"none"``: The joint stiffness and damping are set to 0.0. * ``"position"``: The joint stiff and damping are set based on the URDF file or provided configuration. * ``"velocity"``: The joint stiff is set to zero and damping is based on the URDF file or provided configuration. """ default_drive_stiffness: float = 0.0 """The default stiffness of the joint drive. Defaults to 0.0.""" default_drive_damping: float = 0.0 """The default damping of the joint drive. Defaults to 0.0. Note: If set to zero, the values parsed from the URDF joint tag ``"<dynamics><damping>"`` are used. Otherwise, it is overridden by the configured value. """
2,235
Python
34.492063
117
0.699329
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/app/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package containing app-specific functionalities. These include: * Ability to launch the simulation app with different configurations * Run tests with the simulation app """ from .app_launcher import AppLauncher # noqa: F401, F403 from .runners import run_tests # noqa: F401, F403
416
Python
23.52941
68
0.759615
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/app/app_launcher.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package with the utility class to configure the :class:`omni.isaac.kit.SimulationApp`. The :class:`AppLauncher` parses environment variables and input CLI arguments to launch the simulator in various different modes. This includes with or without GUI and switching between different Omniverse remote clients. Some of these require the extensions to be loaded in a specific order, otherwise a segmentation fault occurs. The launched :class:`omni.isaac.kit.SimulationApp` instance is accessible via the :attr:`AppLauncher.app` property. """ from __future__ import annotations import argparse import faulthandler import os import re import signal import sys from typing import Any, Literal from omni.isaac.kit import SimulationApp class AppLauncher: """A utility class to launch Isaac Sim application based on command-line arguments and environment variables. The class resolves the simulation app settings that appear through environments variables, command-line arguments (CLI) or as input keyword arguments. Based on these settings, it launches the simulation app and configures the extensions to load (as a part of post-launch setup). The input arguments provided to the class are given higher priority than the values set from the corresponding environment variables. This provides flexibility to deal with different users' preferences. .. note:: Explicitly defined arguments are only given priority when their value is set to something outside their default configuration. For example, the ``livestream`` argument is -1 by default. It only overrides the ``LIVESTREAM`` environment variable when ``livestream`` argument is set to a value >-1. In other words, if ``livestream=-1``, then the value from the environment variable ``LIVESTREAM`` is used. """ def __init__(self, launcher_args: argparse.Namespace | dict | None = None, **kwargs): """Create a `SimulationApp`_ instance based on the input settings. Args: launcher_args: Input arguments to parse using the AppLauncher and set into the SimulationApp. Defaults to None, which is equivalent to passing an empty dictionary. A detailed description of the possible arguments is available in the `SimulationApp`_ documentation. **kwargs : Additional keyword arguments that will be merged into :attr:`launcher_args`. They serve as a convenience for those who want to pass some arguments using the argparse interface and others directly into the AppLauncher. Duplicated arguments with the :attr:`launcher_args` will raise a ValueError. Raises: ValueError: If there are common/duplicated arguments between ``launcher_args`` and ``kwargs``. ValueError: If combination of ``launcher_args`` and ``kwargs`` are missing the necessary arguments that are needed by the AppLauncher to resolve the desired app configuration. ValueError: If incompatible or undefined values are assigned to relevant environment values, such as ``LIVESTREAM``. .. _argparse.Namespace: https://docs.python.org/3/library/argparse.html?highlight=namespace#argparse.Namespace .. _SimulationApp: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.kit/docs/index.html """ # Enable call-stack on crash faulthandler.enable() # We allow users to pass either a dict or an argparse.Namespace into # __init__, anticipating that these will be all of the argparse arguments # used by the calling script. Those which we appended via add_app_launcher_args # will be used to control extension loading logic. Additional arguments are allowed, # and will be passed directly to the SimulationApp initialization. # # We could potentially require users to enter each argument they want passed here # as a kwarg, but this would require them to pass livestream, headless, and # any other options we choose to add here explicitly, and with the correct keywords. # # @hunter: I feel that this is cumbersome and could introduce error, and would prefer to do # some sanity checking in the add_app_launcher_args function if launcher_args is None: launcher_args = {} elif isinstance(launcher_args, argparse.Namespace): launcher_args = launcher_args.__dict__ # Check that arguments are unique if len(kwargs) > 0: if not set(kwargs.keys()).isdisjoint(launcher_args.keys()): overlapping_args = set(kwargs.keys()).intersection(launcher_args.keys()) raise ValueError( f"Input `launcher_args` and `kwargs` both provided common attributes: {overlapping_args}." " Please ensure that each argument is supplied to only one of them, as the AppLauncher cannot" " discern priority between them." ) launcher_args.update(kwargs) # Define config members that are read from env-vars or keyword args self._headless: bool # 0: GUI, 1: Headless self._livestream: Literal[0, 1, 2, 3] # 0: Disabled, 1: Native, 2: Websocket, 3: WebRTC self._offscreen_render: bool # 0: Disabled, 1: Enabled self._sim_experience_file: str # Experience file to load # Integrate env-vars and input keyword args into simulation app config self._config_resolution(launcher_args) # Create SimulationApp, passing the resolved self._config to it for initialization self._create_app() # Load IsaacSim extensions self._load_extensions() # Hide the stop button in the toolbar self._hide_stop_button() # Set up signal handlers for graceful shutdown # -- during interrupts signal.signal(signal.SIGINT, self._interrupt_signal_handle_callback) # -- during explicit `kill` commands signal.signal(signal.SIGTERM, self._abort_signal_handle_callback) # -- during segfaults signal.signal(signal.SIGABRT, self._abort_signal_handle_callback) signal.signal(signal.SIGSEGV, self._abort_signal_handle_callback) """ Properties. """ @property def app(self) -> SimulationApp: """The launched SimulationApp.""" if self._app is not None: return self._app else: raise RuntimeError("The `AppLauncher.app` member cannot be retrieved until the class is initialized.") """ Operations. """ @staticmethod def add_app_launcher_args(parser: argparse.ArgumentParser) -> None: """Utility function to configure AppLauncher arguments with an existing argument parser object. This function takes an ``argparse.ArgumentParser`` object and does some sanity checking on the existing arguments for ingestion by the SimulationApp. It then appends custom command-line arguments relevant to the SimulationApp to the input :class:`argparse.ArgumentParser` instance. This allows overriding the environment variables using command-line arguments. Currently, it adds the following parameters to the argparser object: * ``headless`` (bool): If True, the app will be launched in headless (no-gui) mode. The values map the same as that for the ``HEADLESS`` environment variable. If False, then headless mode is determined by the ``HEADLESS`` environment variable. * ``livestream`` (int): If one of {0, 1, 2, 3}, then livestreaming and headless mode is enabled. The values map the same as that for the ``LIVESTREAM`` environment variable. If :obj:`-1`, then livestreaming is determined by the ``LIVESTREAM`` environment variable. * ``offscreen_render`` (bool): If True, the app will be launched in offscreen-render mode. The values map the same as that for the ``OFFSCREEN_RENDER`` environment variable. If False, then offscreen-render mode is determined by the ``OFFSCREEN_RENDER`` environment variable. * ``experience`` (str): The experience file to load when launching the SimulationApp. If a relative path is provided, it is resolved relative to the ``apps`` folder in Isaac Sim and Orbit (in that order). If provided as an empty string, the experience file is determined based on the headless flag: * If headless is True, the experience file is set to ``orbit.python.headless.kit``. * If headless is False, the experience file is set to ``orbit.python.kit``. Args: parser: An argument parser instance to be extended with the AppLauncher specific options. """ # If the passed parser has an existing _HelpAction when passed, # we here remove the options which would invoke it, # to be added back after the additional AppLauncher args # have been added. This is equivalent to # initially constructing the ArgParser with add_help=False, # but this means we don't have to require that behavior # in users and can handle it on our end. # We do this because calling parse_known_args() will handle # any -h/--help options being passed and then exit immediately, # before the additional arguments can be added to the help readout. parser_help = None if len(parser._actions) > 0 and isinstance(parser._actions[0], argparse._HelpAction): # type: ignore parser_help = parser._actions[0] parser._option_string_actions.pop("-h") parser._option_string_actions.pop("--help") # Parse known args for potential name collisions/type mismatches # between the config fields SimulationApp expects and the ArgParse # arguments that the user passed. known, _ = parser.parse_known_args() config = vars(known) if len(config) == 0: print( "[WARN][AppLauncher]: There are no arguments attached to the ArgumentParser object." " If you have your own arguments, please load your own arguments before calling the" " `AppLauncher.add_app_launcher_args` method. This allows the method to check the validity" " of the arguments and perform checks for argument names." ) else: AppLauncher._check_argparser_config_params(config) # Add custom arguments to the parser arg_group = parser.add_argument_group( "app_launcher arguments", description="Arguments for the AppLauncher. For more details, please check the documentation.", ) arg_group.add_argument( "--headless", action="store_true", default=AppLauncher._APPLAUNCHER_CFG_INFO["headless"][1], help="Force display off at all times.", ) arg_group.add_argument( "--livestream", type=int, default=AppLauncher._APPLAUNCHER_CFG_INFO["livestream"][1], choices={0, 1, 2, 3}, help="Force enable livestreaming. Mapping corresponds to that for the `LIVESTREAM` environment variable.", ) arg_group.add_argument( "--offscreen_render", action="store_true", default=AppLauncher._APPLAUNCHER_CFG_INFO["offscreen_render"][1], help="Enable offscreen rendering when running without a GUI.", ) arg_group.add_argument( "--verbose", # Note: This is read by SimulationApp through sys.argv action="store_true", help="Enable verbose terminal output from the SimulationApp.", ) arg_group.add_argument( "--experience", type=str, default="", help=( "The experience file to load when launching the SimulationApp. If an empty string is provided," " the experience file is determined based on the headless flag. If a relative path is provided," " it is resolved relative to the `apps` folder in Isaac Sim and Orbit (in that order)." ), ) # Corresponding to the beginning of the function, # if we have removed -h/--help handling, we add it back. if parser_help is not None: parser._option_string_actions["-h"] = parser_help parser._option_string_actions["--help"] = parser_help """ Internal functions. """ _APPLAUNCHER_CFG_INFO: dict[str, tuple[list[type], Any]] = { "headless": ([bool], False), "livestream": ([int], -1), "offscreen_render": ([bool], False), "experience": ([str], ""), } """A dictionary of arguments added manually by the :meth:`AppLauncher.add_app_launcher_args` method. The values are a tuple of the expected type and default value. This is used to check against name collisions for arguments passed to the :class:`AppLauncher` class as well as for type checking. They have corresponding environment variables as detailed in the documentation. """ # TODO: Find some internally managed NVIDIA list of these types. # SimulationApp.DEFAULT_LAUNCHER_CONFIG almost works, except that # it is ambiguous where the default types are None _SIM_APP_CFG_TYPES: dict[str, list[type]] = { "headless": [bool], "active_gpu": [int, type(None)], "physics_gpu": [int], "multi_gpu": [bool], "sync_loads": [bool], "width": [int], "height": [int], "window_width": [int], "window_height": [int], "display_options": [int], "subdiv_refinement_level": [int], "renderer": [str], "anti_aliasing": [int], "samples_per_pixel_per_frame": [int], "denoiser": [bool], "max_bounces": [int], "max_specular_transmission_bounces": [int], "max_volume_bounces": [int], "open_usd": [str, type(None)], "livesync_usd": [str, type(None)], "fast_shutdown": [bool], "experience": [str], } """A dictionary containing the type of arguments passed to SimulationApp. This is used to check against name collisions for arguments passed to the :class:`AppLauncher` class as well as for type checking. It corresponds closely to the :attr:`SimulationApp.DEFAULT_LAUNCHER_CONFIG`, but specifically denotes where None types are allowed. """ @staticmethod def _check_argparser_config_params(config: dict) -> None: """Checks that input argparser object has parameters with valid settings with no name conflicts. First, we inspect the dictionary to ensure that the passed ArgParser object is not attempting to add arguments which should be assigned by calling :meth:`AppLauncher.add_app_launcher_args`. Then, we check that if the key corresponds to a config setting expected by SimulationApp, then the type of that key's value corresponds to the type expected by the SimulationApp. If it passes the check, the function prints out that the setting with be passed to the SimulationApp. Otherwise, we raise a ValueError exception. Args: config: A configuration parameters which will be passed to the SimulationApp constructor. Raises: ValueError: If a key is an already existing field in the configuration parameters but should be added by calling the :meth:`AppLauncher.add_app_launcher_args. ValueError: If keys corresponding to those used to initialize SimulationApp (as found in :attr:`_SIM_APP_CFG_TYPES`) are of the wrong value type. """ # check that no config key conflicts with AppLauncher config names applauncher_keys = set(AppLauncher._APPLAUNCHER_CFG_INFO.keys()) for key, value in config.items(): if key in applauncher_keys: raise ValueError( f"The passed ArgParser object already has the field '{key}'. This field will be added by" " `AppLauncher.add_app_launcher_args()`, and should not be added directly. Please remove the" " argument or rename it to a non-conflicting name." ) # check that type of the passed keys are valid simulationapp_keys = set(AppLauncher._SIM_APP_CFG_TYPES.keys()) for key, value in config.items(): if key in simulationapp_keys: given_type = type(value) expected_types = AppLauncher._SIM_APP_CFG_TYPES[key] if type(value) not in set(expected_types): raise ValueError( f"Invalid value type for the argument '{key}': {given_type}. Expected one of {expected_types}," " if intended to be ingested by the SimulationApp object. Please change the type if this" " intended for the SimulationApp or change the name of the argument to avoid name conflicts." ) # Print out values which will be used print(f"[INFO][AppLauncher]: The argument '{key}' will be used to configure the SimulationApp.") def _config_resolution(self, launcher_args: dict): """Resolve the input arguments and environment variables. Args: launcher_args: A dictionary of all input arguments passed to the class object. """ # Handle all control logic resolution # --LIVESTREAM logic-- # livestream_env = int(os.environ.get("LIVESTREAM", 0)) livestream_arg = launcher_args.pop("livestream", AppLauncher._APPLAUNCHER_CFG_INFO["livestream"][1]) livestream_valid_vals = {0, 1, 2, 3} # Value checking on LIVESTREAM if livestream_env not in livestream_valid_vals: raise ValueError( f"Invalid value for environment variable `LIVESTREAM`: {livestream_env} ." f" Expected: {livestream_valid_vals}." ) # We allow livestream kwarg to supersede LIVESTREAM envvar if livestream_arg >= 0: if livestream_arg in livestream_valid_vals: self._livestream = livestream_arg # print info that we overrode the env-var print( f"[INFO][AppLauncher]: Input keyword argument `livestream={livestream_arg}` has overridden" f" the environment variable `LIVESTREAM={livestream_env}`." ) else: raise ValueError( f"Invalid value for input keyword argument `livestream`: {livestream_arg} ." f" Expected: {livestream_valid_vals}." ) else: self._livestream = livestream_env # --HEADLESS logic-- # # Resolve headless execution of simulation app # HEADLESS is initially passed as an int instead of # the bool of headless_arg to avoid messy string processing, headless_env = int(os.environ.get("HEADLESS", 0)) headless_arg = launcher_args.pop("headless", AppLauncher._APPLAUNCHER_CFG_INFO["headless"][1]) headless_valid_vals = {0, 1} # Value checking on HEADLESS if headless_env not in headless_valid_vals: raise ValueError( f"Invalid value for environment variable `HEADLESS`: {headless_env} . Expected: {headless_valid_vals}." ) # We allow headless kwarg to supersede HEADLESS envvar if headless_arg does not have the default value # Note: Headless is always true when livestreaming if headless_arg is True: self._headless = headless_arg elif self._livestream in {1, 2, 3}: # we are always headless on the host machine self._headless = True # inform who has toggled the headless flag if self._livestream == livestream_arg: print( f"[INFO][AppLauncher]: Input keyword argument `livestream={self._livestream}` has implicitly" f" overridden the environment variable `HEADLESS={headless_env}` to True." ) elif self._livestream == livestream_env: print( f"[INFO][AppLauncher]: Environment variable `LIVESTREAM={self._livestream}` has implicitly" f" overridden the environment variable `HEADLESS={headless_env}` to True." ) else: # Headless needs to be a bool to be ingested by SimulationApp self._headless = bool(headless_env) # Headless needs to be passed to the SimulationApp so we keep it here launcher_args["headless"] = self._headless # --OFFSCREEN_RENDER logic-- # # off-screen rendering offscreen_render_env = int(os.environ.get("OFFSCREEN_RENDER", 0)) offscreen_render_arg = launcher_args.pop( "offscreen_render", AppLauncher._APPLAUNCHER_CFG_INFO["offscreen_render"][1] ) offscreen_render_valid_vals = {0, 1} if offscreen_render_env not in offscreen_render_valid_vals: raise ValueError( f"Invalid value for environment variable `OFFSCREEN_RENDER`: {offscreen_render_env} ." f"Expected: {offscreen_render_valid_vals} ." ) # We allow offscreen_render kwarg to supersede OFFSCREEN_RENDER envvar if offscreen_render_arg is True: self._offscreen_render = offscreen_render_arg else: self._offscreen_render = bool(offscreen_render_env) # Check if input keywords contain an 'experience' file setting # Note: since experience is taken as a separate argument by Simulation App, we store it separately self._sim_experience_file = launcher_args.pop("experience", "") # If nothing is provided resolve the experience file based on the headless flag kit_app_exp_path = os.environ["EXP_PATH"] orbit_app_exp_path = os.path.join(os.environ["ORBIT_PATH"], "source", "apps") if self._sim_experience_file == "": # check if the headless flag is set if self._headless and not self._livestream: self._sim_experience_file = os.path.join(orbit_app_exp_path, "orbit.python.headless.kit") else: self._sim_experience_file = os.path.join(orbit_app_exp_path, "orbit.python.kit") elif not os.path.isabs(self._sim_experience_file): option_1_app_exp_path = os.path.join(kit_app_exp_path, self._sim_experience_file) option_2_app_exp_path = os.path.join(orbit_app_exp_path, self._sim_experience_file) if os.path.exists(option_1_app_exp_path): self._sim_experience_file = option_1_app_exp_path elif os.path.exists(option_2_app_exp_path): self._sim_experience_file = option_2_app_exp_path else: raise FileNotFoundError( f"Invalid value for input keyword argument `experience`: {self._sim_experience_file}." "\n No such file exists in either the Kit or Orbit experience paths. Checked paths:" f"\n\t [1]: {option_1_app_exp_path}" f"\n\t [2]: {option_2_app_exp_path}" ) elif not os.path.exists(self._sim_experience_file): raise FileNotFoundError( f"Invalid value for input keyword argument `experience`: {self._sim_experience_file}." " The file does not exist." ) print(f"[INFO][AppLauncher]: Loading experience file: {self._sim_experience_file}") # Remove all values from input keyword args which are not meant for SimulationApp # Assign all the passed settings to a dictionary for the simulation app self._sim_app_config = { key: launcher_args[key] for key in set(AppLauncher._SIM_APP_CFG_TYPES.keys()) & set(launcher_args.keys()) } def _create_app(self): """Launch and create the SimulationApp based on the parsed simulation config.""" # Initialize SimulationApp # hack sys module to make sure that the SimulationApp is initialized correctly # this is to avoid the warnings from the simulation app about not ok modules r = re.compile(".*orbit.*") found_modules = list(filter(r.match, list(sys.modules.keys()))) found_modules += ["omni.isaac.kit.app_framework"] # remove orbit modules from sys.modules hacked_modules = dict() for key in found_modules: hacked_modules[key] = sys.modules[key] del sys.modules[key] # launch simulation app self._app = SimulationApp(self._sim_app_config, experience=self._sim_experience_file) # add orbit modules back to sys.modules for key, value in hacked_modules.items(): sys.modules[key] = value def _load_extensions(self): """Load correct extensions based on AppLauncher's resolved config member variables.""" # These have to be loaded after SimulationApp is initialized import carb from omni.isaac.core.utils.extensions import enable_extension # Retrieve carb settings for modification carb_settings_iface = carb.settings.get_settings() if self._livestream >= 1: # Ensure that a viewport exists in case an experience has been # loaded which does not load it by default enable_extension("omni.kit.viewport.window") # Set carb settings to allow for livestreaming carb_settings_iface.set_bool("/app/livestream/enabled", True) carb_settings_iface.set_bool("/app/window/drawMouse", True) carb_settings_iface.set_bool("/ngx/enabled", False) carb_settings_iface.set_string("/app/livestream/proto", "ws") carb_settings_iface.set_int("/app/livestream/websocket/framerate_limit", 120) # Note: Only one livestream extension can be enabled at a time if self._livestream == 1: # Enable Native Livestream extension # Default App: Streaming Client from the Omniverse Launcher enable_extension("omni.kit.livestream.native") enable_extension("omni.services.streaming.manager") elif self._livestream == 2: # Enable WebSocket Livestream extension # Default URL: http://localhost:8211/streaming/client/ enable_extension("omni.services.streamclient.websocket") elif self._livestream == 3: # Enable WebRTC Livestream extension # Default URL: http://localhost:8211/streaming/webrtc-client/ enable_extension("omni.services.streamclient.webrtc") else: raise ValueError(f"Invalid value for livestream: {self._livestream}. Expected: 1, 2, 3 .") else: carb_settings_iface.set_bool("/app/livestream/enabled", False) # set carb setting to indicate orbit's offscreen_render pipeline should be enabled # this flag is used by the SimulationContext class to enable the offscreen_render pipeline # when the render() method is called. carb_settings_iface.set_bool("/orbit/offscreen_render/enabled", self._offscreen_render) # enable extensions for off-screen rendering # Depending on the app file, some extensions might not be available in it. # Thus, we manually enable these extensions to make sure they are available. # note: enabling extensions is order-sensitive. please do not change the order! if self._offscreen_render or not self._headless or self._livestream >= 1: # extension to enable UI buttons (otherwise we get attribute errors) enable_extension("omni.kit.window.toolbar") if self._offscreen_render or not self._headless: # extension to make RTX realtime and path-traced renderers enable_extension("omni.kit.viewport.rtx") # extension to make HydraDelegate renderers enable_extension("omni.kit.viewport.pxr") # enable viewport extension if full rendering is enabled enable_extension("omni.kit.viewport.bundle") # extension for window status bar enable_extension("omni.kit.window.status_bar") # enable replicator extension # note: moved here since it requires to have the viewport extension to be enabled first. enable_extension("omni.replicator.core") # enable UI tools # note: we need to always import this even with headless to make # the module for orbit.envs.ui work enable_extension("omni.isaac.ui") # enable animation recording extension if not self._headless or self._livestream >= 1: enable_extension("omni.kit.stagerecorder.core") # set the nucleus directory manually to the latest published Nucleus # note: this is done to ensure prior versions of Isaac Sim still use the latest assets carb_settings_iface.set_string( "/persistent/isaac/asset_root/default", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1", ) carb_settings_iface.set_string( "/persistent/isaac/asset_root/nvidia", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1", ) def _hide_stop_button(self): """Hide the stop button in the toolbar. For standalone executions, having a stop button is confusing since it invalidates the whole simulation. Thus, we hide the button so that users don't accidentally click it. """ # when we are truly headless, then we can't import the widget toolbar # thus, we only hide the stop button when we are not headless (i.e. GUI is enabled) if self._livestream >= 1 or not self._headless: import omni.kit.widget.toolbar # grey out the stop button because we don't want to stop the simulation manually in standalone mode toolbar = omni.kit.widget.toolbar.get_instance() play_button_group = toolbar._builtin_tools._play_button_group # type: ignore if play_button_group is not None: play_button_group._stop_button.visible = False # type: ignore play_button_group._stop_button.enabled = False # type: ignore play_button_group._stop_button = None # type: ignore def _interrupt_signal_handle_callback(self, signal, frame): """Handle the interrupt signal from the keyboard.""" # close the app self._app.close() # raise the error for keyboard interrupt raise KeyboardInterrupt def _abort_signal_handle_callback(self, signal, frame): """Handle the abort/segmentation/kill signals.""" # close the app self._app.close()
31,560
Python
50.909539
121
0.639449
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/app/runners.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module with runners to simplify running main via unittest.""" from __future__ import annotations import unittest def run_tests(verbosity: int = 2, **kwargs): """Wrapper for running tests via ``unittest``. Args: verbosity: Verbosity level for the test runner. **kwargs: Additional arguments to pass to the `unittest.main` function. """ # run main unittest.main(verbosity=verbosity, exit=True, **kwargs)
573
Python
25.090908
79
0.692845
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_pd.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.core.utils.types import ArticulationActions from .actuator_base import ActuatorBase if TYPE_CHECKING: from .actuator_cfg import DCMotorCfg, IdealPDActuatorCfg, ImplicitActuatorCfg """ Implicit Actuator Models. """ class ImplicitActuator(ActuatorBase): """Implicit actuator model that is handled by the simulation. This performs a similar function as the :class:`IdealPDActuator` class. However, the PD control is handled implicitly by the simulation which performs continuous-time integration of the PD control law. This is generally more accurate than the explicit PD control law used in :class:`IdealPDActuator` when the simulation time-step is large. .. note:: The articulation class sets the stiffness and damping parameters from the configuration into the simulation. Thus, the parameters are not used in this class. .. caution:: The class is only provided for consistency with the other actuator models. It does not implement any functionality and should not be used. All values should be set to the simulation directly. """ cfg: ImplicitActuatorCfg """The configuration for the actuator model.""" """ Operations. """ def reset(self, *args, **kwargs): # This is a no-op. There is no state to reset for implicit actuators. pass def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: """Compute the aproximmate torques for the actuated joint (physX does not compute this explicitly).""" # store approximate torques for reward computation error_pos = control_action.joint_positions - joint_pos error_vel = control_action.joint_velocities - joint_vel self.computed_effort = self.stiffness * error_pos + self.damping * error_vel + control_action.joint_efforts # clip the torques based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) return control_action """ Explicit Actuator Models. """ class IdealPDActuator(ActuatorBase): r"""Ideal torque-controlled actuator model with a simple saturation model. It employs the following model for computing torques for the actuated joint :math:`j`: .. math:: \tau_{j, computed} = k_p * (q - q_{des}) + k_d * (\dot{q} - \dot{q}_{des}) + \tau_{ff} where, :math:`k_p` and :math:`k_d` are joint stiffness and damping gains, :math:`q` and :math:`\dot{q}` are the current joint positions and velocities, :math:`q_{des}`, :math:`\dot{q}_{des}` and :math:`\tau_{ff}` are the desired joint positions, velocities and torques commands. The clipping model is based on the maximum torque applied by the motor. It is implemented as: .. math:: \tau_{j, max} & = \gamma \times \tau_{motor, max} \\ \tau_{j, applied} & = clip(\tau_{computed}, -\tau_{j, max}, \tau_{j, max}) where the clipping function is defined as :math:`clip(x, x_{min}, x_{max}) = min(max(x, x_{min}), x_{max})`. The parameters :math:`\gamma` is the gear ratio of the gear box connecting the motor and the actuated joint ends, and :math:`\tau_{motor, max}` is the maximum motor effort possible. These parameters are read from the configuration instance passed to the class. """ cfg: IdealPDActuatorCfg """The configuration for the actuator model.""" """ Operations. """ def reset(self, env_ids: Sequence[int]): pass def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # compute errors error_pos = control_action.joint_positions - joint_pos error_vel = control_action.joint_velocities - joint_vel # calculate the desired joint torques self.computed_effort = self.stiffness * error_pos + self.damping * error_vel + control_action.joint_efforts # clip the torques based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) # set the computed actions back into the control action control_action.joint_efforts = self.applied_effort control_action.joint_positions = None control_action.joint_velocities = None return control_action class DCMotor(IdealPDActuator): r""" Direct control (DC) motor actuator model with velocity-based saturation model. It uses the same model as the :class:`IdealActuator` for computing the torques from input commands. However, it implements a saturation model defined by DC motor characteristics. A DC motor is a type of electric motor that is powered by direct current electricity. In most cases, the motor is connected to a constant source of voltage supply, and the current is controlled by a rheostat. Depending on various design factors such as windings and materials, the motor can draw a limited maximum power from the electronic source, which limits the produced motor torque and speed. A DC motor characteristics are defined by the following parameters: * Continuous-rated speed (:math:`\dot{q}_{motor, max}`) : The maximum-rated speed of the motor. * Continuous-stall torque (:math:`\tau_{motor, max}`): The maximum-rated torque produced at 0 speed. * Saturation torque (:math:`\tau_{motor, sat}`): The maximum torque that can be outputted for a short period. Based on these parameters, the instantaneous minimum and maximum torques are defined as follows: .. math:: \tau_{j, max}(\dot{q}) & = clip \left (\tau_{j, sat} \times \left(1 - \frac{\dot{q}}{\dot{q}_{j, max}}\right), 0.0, \tau_{j, max} \right) \\ \tau_{j, min}(\dot{q}) & = clip \left (\tau_{j, sat} \times \left( -1 - \frac{\dot{q}}{\dot{q}_{j, max}}\right), - \tau_{j, max}, 0.0 \right) where :math:`\gamma` is the gear ratio of the gear box connecting the motor and the actuated joint ends, :math:`\dot{q}_{j, max} = \gamma^{-1} \times \dot{q}_{motor, max}`, :math:`\tau_{j, max} = \gamma \times \tau_{motor, max}` and :math:`\tau_{j, peak} = \gamma \times \tau_{motor, peak}` are the maximum joint velocity, maximum joint torque and peak torque, respectively. These parameters are read from the configuration instance passed to the class. Using these values, the computed torques are clipped to the minimum and maximum values based on the instantaneous joint velocity: .. math:: \tau_{j, applied} = clip(\tau_{computed}, \tau_{j, min}(\dot{q}), \tau_{j, max}(\dot{q})) """ cfg: DCMotorCfg """The configuration for the actuator model.""" def __init__(self, cfg: DCMotorCfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # parse configuration if self.cfg.saturation_effort is not None: self._saturation_effort = self.cfg.saturation_effort else: self._saturation_effort = torch.inf # prepare joint vel buffer for max effort computation self._joint_vel = torch.zeros_like(self.computed_effort) # create buffer for zeros effort self._zeros_effort = torch.zeros_like(self.computed_effort) # check that quantities are provided if self.cfg.velocity_limit is None: raise ValueError("The velocity limit must be provided for the DC motor actuator model.") """ Operations. """ def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # save current joint vel self._joint_vel[:] = joint_vel # calculate the desired joint torques return super().compute(control_action, joint_pos, joint_vel) """ Helper functions. """ def _clip_effort(self, effort: torch.Tensor) -> torch.Tensor: # compute torque limits # -- max limit max_effort = self._saturation_effort * (1.0 - self._joint_vel / self.velocity_limit) max_effort = torch.clip(max_effort, min=self._zeros_effort, max=self.effort_limit) # -- min limit min_effort = self._saturation_effort * (-1.0 - self._joint_vel / self.velocity_limit) min_effort = torch.clip(min_effort, min=-self.effort_limit, max=self._zeros_effort) # clip the torques based on the motor limits return torch.clip(effort, min=min_effort, max=max_effort)
8,791
Python
40.276995
117
0.67171
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from collections.abc import Iterable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass from . import actuator_net, actuator_pd from .actuator_base import ActuatorBase @configclass class ActuatorBaseCfg: """Configuration for default actuators in an articulation.""" class_type: type[ActuatorBase] = MISSING """The associated actuator class. The class should inherit from :class:`omni.isaac.orbit.actuators.ActuatorBase`. """ joint_names_expr: list[str] = MISSING """Articulation's joint names that are part of the group. Note: This can be a list of joint names or a list of regex expressions (e.g. ".*"). """ effort_limit: dict[str, float] | float | None = None """Force/Torque limit of the joints in the group. Defaults to None. If None, the limit is set to the value specified in the USD joint prim. """ velocity_limit: dict[str, float] | float | None = None """Velocity limit of the joints in the group. Defaults to None. If None, the limit is set to the value specified in the USD joint prim. """ stiffness: dict[str, float] | float | None = MISSING """Stiffness gains (also known as p-gain) of the joints in the group. If None, the stiffness is set to the value from the USD joint prim. """ damping: dict[str, float] | float | None = MISSING """Damping gains (also known as d-gain) of the joints in the group. If None, the damping is set to the value from the USD joint prim. """ armature: dict[str, float] | float | None = None """Armature of the joints in the group. Defaults to None. If None, the armature is set to the value from the USD joint prim. """ friction: dict[str, float] | float | None = None """Joint friction of the joints in the group. Defaults to None. If None, the joint friction is set to the value from the USD joint prim. """ """ Implicit Actuator Models. """ @configclass class ImplicitActuatorCfg(ActuatorBaseCfg): """Configuration for an implicit actuator. Note: The PD control is handled implicitly by the simulation. """ class_type: type = actuator_pd.ImplicitActuator """ Explicit Actuator Models. """ @configclass class IdealPDActuatorCfg(ActuatorBaseCfg): """Configuration for an ideal PD actuator.""" class_type: type = actuator_pd.IdealPDActuator @configclass class DCMotorCfg(IdealPDActuatorCfg): """Configuration for direct control (DC) motor actuator model.""" class_type: type = actuator_pd.DCMotor saturation_effort: float = MISSING """Peak motor force/torque of the electric DC motor (in N-m).""" @configclass class ActuatorNetLSTMCfg(DCMotorCfg): """Configuration for LSTM-based actuator model.""" class_type: type = actuator_net.ActuatorNetLSTM # we don't use stiffness and damping for actuator net stiffness = None damping = None network_file: str = MISSING """Path to the file containing network weights.""" @configclass class ActuatorNetMLPCfg(DCMotorCfg): """Configuration for MLP-based actuator model.""" class_type: type = actuator_net.ActuatorNetMLP # we don't use stiffness and damping for actuator net stiffness = None damping = None network_file: str = MISSING """Path to the file containing network weights.""" pos_scale: float = MISSING """Scaling of the joint position errors input to the network.""" vel_scale: float = MISSING """Scaling of the joint velocities input to the network.""" torque_scale: float = MISSING """Scaling of the joint efforts output from the network.""" input_order: Literal["pos_vel", "vel_pos"] = MISSING """Order of the inputs to the network. The order can be one of the following: * ``"pos_vel"``: joint position errors followed by joint velocities * ``"vel_pos"``: joint velocities followed by joint position errors """ input_idx: Iterable[int] = MISSING """ Indices of the actuator history buffer passed as inputs to the network. The index *0* corresponds to current time-step, while *n* corresponds to n-th time-step in the past. The allocated history length is `max(input_idx) + 1`. """
4,456
Python
27.208861
85
0.688959
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for different actuator models. Actuator models are used to model the behavior of the actuators in an articulation. These are usually meant to be used in simulation to model different actuator dynamics and delays. There are two main categories of actuator models that are supported: - **Implicit**: Motor model with ideal PD from the physics engine. This is similar to having a continuous time PD controller. The motor model is implicit in the sense that the motor model is not explicitly defined by the user. - **Explicit**: Motor models based on physical drive models. - **Physics-based**: Derives the motor models based on first-principles. - **Neural Network-based**: Learned motor models from actuator data. Every actuator model inherits from the :class:`omni.isaac.orbit.actuators.ActuatorBase` class, which defines the common interface for all actuator models. The actuator models are handled and called by the :class:`omni.isaac.orbit.assets.Articulation` class. """ from .actuator_base import ActuatorBase from .actuator_cfg import ( ActuatorBaseCfg, ActuatorNetLSTMCfg, ActuatorNetMLPCfg, DCMotorCfg, IdealPDActuatorCfg, ImplicitActuatorCfg, ) from .actuator_net import ActuatorNetLSTM, ActuatorNetMLP from .actuator_pd import DCMotor, IdealPDActuator, ImplicitActuator
1,453
Python
39.388888
117
0.781142
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_base.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from abc import ABC, abstractmethod from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.core.utils.types import ArticulationActions import omni.isaac.orbit.utils.string as string_utils if TYPE_CHECKING: from .actuator_cfg import ActuatorBaseCfg class ActuatorBase(ABC): """Base class for actuator models over a collection of actuated joints in an articulation. Actuator models augment the simulated articulation joints with an external drive dynamics model. The model is used to convert the user-provided joint commands (positions, velocities and efforts) into the desired joint positions, velocities and efforts that are applied to the simulated articulation. The base class provides the interface for the actuator models. It is responsible for parsing the actuator parameters from the configuration and storing them as buffers. It also provides the interface for resetting the actuator state and computing the desired joint commands for the simulation. For each actuator model, a corresponding configuration class is provided. The configuration class is used to parse the actuator parameters from the configuration. It also specifies the joint names for which the actuator model is applied. These names can be specified as regular expressions, which are matched against the joint names in the articulation. To see how the class is used, check the :class:`omni.isaac.orbit.assets.Articulation` class. """ computed_effort: torch.Tensor """The computed effort for the actuator group. Shape is (num_envs, num_joints).""" applied_effort: torch.Tensor """The applied effort for the actuator group. Shape is (num_envs, num_joints).""" effort_limit: torch.Tensor """The effort limit for the actuator group. Shape is (num_envs, num_joints).""" velocity_limit: torch.Tensor """The velocity limit for the actuator group. Shape is (num_envs, num_joints).""" stiffness: torch.Tensor """The stiffness (P gain) of the PD controller. Shape is (num_envs, num_joints).""" damping: torch.Tensor """The damping (D gain) of the PD controller. Shape is (num_envs, num_joints).""" armature: torch.Tensor """The armature of the actuator joints. Shape is (num_envs, num_joints).""" friction: torch.Tensor """The joint friction of the actuator joints. Shape is (num_envs, num_joints).""" def __init__( self, cfg: ActuatorBaseCfg, joint_names: list[str], joint_ids: slice | Sequence[int], num_envs: int, device: str, stiffness: torch.Tensor | float = 0.0, damping: torch.Tensor | float = 0.0, armature: torch.Tensor | float = 0.0, friction: torch.Tensor | float = 0.0, effort_limit: torch.Tensor | float = torch.inf, velocity_limit: torch.Tensor | float = torch.inf, ): """Initialize the actuator. Note: The actuator parameters are parsed from the configuration and stored as buffers. If the parameters are not specified in the configuration, then the default values provided in the arguments are used. Args: cfg: The configuration of the actuator model. joint_names: The joint names in the articulation. joint_ids: The joint indices in the articulation. If :obj:`slice(None)`, then all the joints in the articulation are part of the group. num_envs: Number of articulations in the view. device: Device used for processing. stiffness: The default joint stiffness (P gain). Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). damping: The default joint damping (D gain). Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). armature: The default joint armature. Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). friction: The default joint friction. Defaults to 0.0. If a tensor, then the shape is (num_envs, num_joints). effort_limit: The default effort limit. Defaults to infinity. If a tensor, then the shape is (num_envs, num_joints). velocity_limit: The default velocity limit. Defaults to infinity. If a tensor, then the shape is (num_envs, num_joints). """ # save parameters self.cfg = cfg self._num_envs = num_envs self._device = device self._joint_names = joint_names self._joint_indices = joint_ids # parse joint stiffness and damping self.stiffness = self._parse_joint_parameter(self.cfg.stiffness, stiffness) self.damping = self._parse_joint_parameter(self.cfg.damping, damping) # parse joint armature and friction self.armature = self._parse_joint_parameter(self.cfg.armature, armature) self.friction = self._parse_joint_parameter(self.cfg.friction, friction) # parse joint limits # note: for velocity limits, we don't have USD parameter, so default is infinity self.effort_limit = self._parse_joint_parameter(self.cfg.effort_limit, effort_limit) self.velocity_limit = self._parse_joint_parameter(self.cfg.velocity_limit, velocity_limit) # create commands buffers for allocation self.computed_effort = torch.zeros(self._num_envs, self.num_joints, device=self._device) self.applied_effort = torch.zeros_like(self.computed_effort) def __str__(self) -> str: """Returns: A string representation of the actuator group.""" # resolve joint indices for printing joint_indices = self.joint_indices if joint_indices == slice(None): joint_indices = list(range(self.num_joints)) return ( f"<class {self.__class__.__name__}> object:\n" f"\tNumber of joints : {self.num_joints}\n" f"\tJoint names expression: {self.cfg.joint_names_expr}\n" f"\tJoint names : {self.joint_names}\n" f"\tJoint indices : {joint_indices}\n" ) """ Properties. """ @property def num_joints(self) -> int: """Number of actuators in the group.""" return len(self._joint_names) @property def joint_names(self) -> list[str]: """Articulation's joint names that are part of the group.""" return self._joint_names @property def joint_indices(self) -> slice | Sequence[int]: """Articulation's joint indices that are part of the group. Note: If :obj:`slice(None)` is returned, then the group contains all the joints in the articulation. We do this to avoid unnecessary indexing of the joints for performance reasons. """ return self._joint_indices """ Operations. """ @abstractmethod def reset(self, env_ids: Sequence[int]): """Reset the internals within the group. Args: env_ids: List of environment IDs to reset. """ raise NotImplementedError @abstractmethod def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: """Process the actuator group actions and compute the articulation actions. It computes the articulation actions based on the actuator model type Args: control_action: The joint action instance comprising of the desired joint positions, joint velocities and (feed-forward) joint efforts. joint_pos: The current joint positions of the joints in the group. Shape is (num_envs, num_joints). joint_vel: The current joint velocities of the joints in the group. Shape is (num_envs, num_joints). Returns: The computed desired joint positions, joint velocities and joint efforts. """ raise NotImplementedError """ Helper functions. """ def _parse_joint_parameter( self, cfg_value: float | dict[str, float] | None, default_value: float | torch.Tensor | None ) -> torch.Tensor: """Parse the joint parameter from the configuration. Args: cfg_value: The parameter value from the configuration. If None, then use the default value. default_value: The default value to use if the parameter is None. If it is also None, then an error is raised. Returns: The parsed parameter value. Raises: TypeError: If the parameter value is not of the expected type. TypeError: If the default value is not of the expected type. ValueError: If the parameter value is None and no default value is provided. """ # create parameter buffer param = torch.zeros(self._num_envs, self.num_joints, device=self._device) # parse the parameter if cfg_value is not None: if isinstance(cfg_value, (float, int)): # if float, then use the same value for all joints param[:] = float(cfg_value) elif isinstance(cfg_value, dict): # if dict, then parse the regular expression indices, _, values = string_utils.resolve_matching_names_values(cfg_value, self.joint_names) # note: need to specify type to be safe (e.g. values are ints, but we want floats) param[:, indices] = torch.tensor(values, dtype=torch.float, device=self._device) else: raise TypeError(f"Invalid type for parameter value: {type(cfg_value)}. Expected float or dict.") elif default_value is not None: if isinstance(default_value, (float, int)): # if float, then use the same value for all joints param[:] = float(default_value) elif isinstance(default_value, torch.Tensor): # if tensor, then use the same tensor for all joints param[:] = default_value.float() else: raise TypeError(f"Invalid type for default value: {type(default_value)}. Expected float or Tensor.") else: raise ValueError("The parameter value is None and no default value is provided.") return param def _clip_effort(self, effort: torch.Tensor) -> torch.Tensor: """Clip the desired torques based on the motor limits. Args: desired_torques: The desired torques to clip. Returns: The clipped torques. """ return torch.clip(effort, min=-self.effort_limit, max=self.effort_limit)
10,995
Python
43.160642
116
0.643838
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/actuators/actuator_net.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Neural network models for actuators. Currently, the following models are supported: * Multi-Layer Perceptron (MLP) * Long Short-Term Memory (LSTM) """ from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.core.utils.types import ArticulationActions from omni.isaac.orbit.utils.assets import read_file from .actuator_pd import DCMotor if TYPE_CHECKING: from .actuator_cfg import ActuatorNetLSTMCfg, ActuatorNetMLPCfg class ActuatorNetLSTM(DCMotor): """Actuator model based on recurrent neural network (LSTM). Unlike the MLP implementation :cite:t:`hwangbo2019learning`, this class implements the learned model as a temporal neural network (LSTM) based on the work from :cite:t:`rudin2022learning`. This removes the need of storing a history as the hidden states of the recurrent network captures the history. Note: Only the desired joint positions are used as inputs to the network. """ cfg: ActuatorNetLSTMCfg """The configuration of the actuator model.""" def __init__(self, cfg: ActuatorNetLSTMCfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # load the model from JIT file file_bytes = read_file(self.cfg.network_file) self.network = torch.jit.load(file_bytes, map_location=self._device) # extract number of lstm layers and hidden dim from the shape of weights num_layers = len(self.network.lstm.state_dict()) // 4 hidden_dim = self.network.lstm.state_dict()["weight_hh_l0"].shape[1] # create buffers for storing LSTM inputs self.sea_input = torch.zeros(self._num_envs * self.num_joints, 1, 2, device=self._device) self.sea_hidden_state = torch.zeros( num_layers, self._num_envs * self.num_joints, hidden_dim, device=self._device ) self.sea_cell_state = torch.zeros(num_layers, self._num_envs * self.num_joints, hidden_dim, device=self._device) # reshape via views (doesn't change the actual memory layout) layer_shape_per_env = (num_layers, self._num_envs, self.num_joints, hidden_dim) self.sea_hidden_state_per_env = self.sea_hidden_state.view(layer_shape_per_env) self.sea_cell_state_per_env = self.sea_cell_state.view(layer_shape_per_env) """ Operations. """ def reset(self, env_ids: Sequence[int]): # reset the hidden and cell states for the specified environments with torch.no_grad(): self.sea_hidden_state_per_env[:, env_ids] = 0.0 self.sea_cell_state_per_env[:, env_ids] = 0.0 def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # compute network inputs self.sea_input[:, 0, 0] = (control_action.joint_positions - joint_pos).flatten() self.sea_input[:, 0, 1] = joint_vel.flatten() # save current joint vel for dc-motor clipping self._joint_vel[:] = joint_vel # run network inference with torch.inference_mode(): torques, (self.sea_hidden_state[:], self.sea_cell_state[:]) = self.network( self.sea_input, (self.sea_hidden_state, self.sea_cell_state) ) self.computed_effort = torques.reshape(self._num_envs, self.num_joints) # clip the computed effort based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) # return torques control_action.joint_efforts = self.applied_effort control_action.joint_positions = None control_action.joint_velocities = None return control_action class ActuatorNetMLP(DCMotor): """Actuator model based on multi-layer perceptron and joint history. Many times the analytical model is not sufficient to capture the actuator dynamics, the delay in the actuator response, or the non-linearities in the actuator. In these cases, a neural network model can be used to approximate the actuator dynamics. This model is trained using data collected from the physical actuator and maps the joint state and the desired joint command to the produced torque by the actuator. This class implements the learned model as a neural network based on the work from :cite:t:`hwangbo2019learning`. The class stores the history of the joint positions errors and velocities which are used to provide input to the neural network. The model is loaded as a TorchScript. Note: Only the desired joint positions are used as inputs to the network. """ cfg: ActuatorNetMLPCfg """The configuration of the actuator model.""" def __init__(self, cfg: ActuatorNetMLPCfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # load the model from JIT file file_bytes = read_file(self.cfg.network_file) self.network = torch.jit.load(file_bytes, map_location=self._device) # create buffers for MLP history history_length = max(self.cfg.input_idx) + 1 self._joint_pos_error_history = torch.zeros( self._num_envs, history_length, self.num_joints, device=self._device ) self._joint_vel_history = torch.zeros(self._num_envs, history_length, self.num_joints, device=self._device) """ Operations. """ def reset(self, env_ids: Sequence[int]): # reset the history for the specified environments self._joint_pos_error_history[env_ids] = 0.0 self._joint_vel_history[env_ids] = 0.0 def compute( self, control_action: ArticulationActions, joint_pos: torch.Tensor, joint_vel: torch.Tensor ) -> ArticulationActions: # move history queue by 1 and update top of history # -- positions self._joint_pos_error_history = self._joint_pos_error_history.roll(1, 1) self._joint_pos_error_history[:, 0] = control_action.joint_positions - joint_pos # -- velocity self._joint_vel_history = self._joint_vel_history.roll(1, 1) self._joint_vel_history[:, 0] = joint_vel # save current joint vel for dc-motor clipping self._joint_vel[:] = joint_vel # compute network inputs # -- positions pos_input = torch.cat([self._joint_pos_error_history[:, i].unsqueeze(2) for i in self.cfg.input_idx], dim=2) pos_input = pos_input.view(self._num_envs * self.num_joints, -1) # -- velocity vel_input = torch.cat([self._joint_vel_history[:, i].unsqueeze(2) for i in self.cfg.input_idx], dim=2) vel_input = vel_input.view(self._num_envs * self.num_joints, -1) # -- scale and concatenate inputs if self.cfg.input_order == "pos_vel": network_input = torch.cat([pos_input * self.cfg.pos_scale, vel_input * self.cfg.vel_scale], dim=1) elif self.cfg.input_order == "vel_pos": network_input = torch.cat([vel_input * self.cfg.vel_scale, pos_input * self.cfg.pos_scale], dim=1) else: raise ValueError( f"Invalid input order for MLP actuator net: {self.cfg.input_order}. Must be 'pos_vel' or 'vel_pos'." ) # run network inference torques = self.network(network_input).view(self._num_envs, self.num_joints) self.computed_effort = torques.view(self._num_envs, self.num_joints) * self.cfg.torque_scale # clip the computed effort based on the motor limits self.applied_effort = self._clip_effort(self.computed_effort) # return torques control_action.joint_efforts = self.applied_effort control_action.joint_positions = None control_action.joint_velocities = None return control_action
7,933
Python
40.757895
120
0.663053
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/interactive_scene_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.utils.configclass import configclass @configclass class InteractiveSceneCfg: """Configuration for the interactive scene. The users can inherit from this class to add entities to their scene. This is then parsed by the :class:`InteractiveScene` class to create the scene. .. note:: The adding of entities to the scene is sensitive to the order of the attributes in the configuration. Please make sure to add the entities in the order you want them to be added to the scene. The recommended order of specification is terrain, physics-related assets (articulations and rigid bodies), sensors and non-physics-related assets (lights). For example, to add a robot to the scene, the user can create a configuration class as follows: .. code-block:: python import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors.ray_caster import GridPatternCfg, RayCasterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG @configclass class MySceneCfg(InteractiveSceneCfg): # terrain - flat terrain plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", ) # articulation - robot 1 robot_1 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_1") # articulation - robot 2 robot_2 = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot_2") robot_2.init_state.pos = (0.0, 1.0, 0.6) # sensor - ray caster attached to the base of robot 1 that scans the ground height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot_1/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/ground"], ) # extras - light light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, 500.0)), ) """ num_envs: int = MISSING """Number of environment instances handled by the scene.""" env_spacing: float = MISSING """Spacing between environments. This is the default distance between environment origins in the scene. Used only when the number of environments is greater than one. """ lazy_sensor_update: bool = True """Whether to update sensors only when they are accessed. Default is True. If true, the sensor data is only updated when their attribute ``data`` is accessed. Otherwise, the sensor data is updated every time sensors are updated. """ replicate_physics: bool = True """Enable/disable replication of physics schemas when using the Cloner APIs. Default is True."""
3,447
Python
36.890109
115
0.64839
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/interactive_scene.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins import torch from collections.abc import Sequence from typing import Any import carb import omni.usd from omni.isaac.cloner import GridCloner from omni.isaac.core.prims import XFormPrimView from pxr import PhysxSchema import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import Articulation, ArticulationCfg, AssetBaseCfg, RigidObject, RigidObjectCfg from omni.isaac.orbit.sensors import FrameTransformerCfg, SensorBase, SensorBaseCfg from omni.isaac.orbit.terrains import TerrainImporter, TerrainImporterCfg from .interactive_scene_cfg import InteractiveSceneCfg class InteractiveScene: """A scene that contains entities added to the simulation. The interactive scene parses the :class:`InteractiveSceneCfg` class to create the scene. Based on the specified number of environments, it clones the entities and groups them into different categories (e.g., articulations, sensors, etc.). Each entity is registered to scene based on its name in the configuration class. For example, if the user specifies a robot in the configuration class as follows: .. code-block:: python from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG @configclass class MySceneCfg(InteractiveSceneCfg): robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") Then the robot can be accessed from the scene as follows: .. code-block:: python from omni.isaac.orbit.scene import InteractiveScene # create 128 environments scene = InteractiveScene(cfg=MySceneCfg(num_envs=128)) # access the robot from the scene robot = scene["robot"] # access the robot based on its type robot = scene.articulations["robot"] .. note:: It is important to note that the scene only performs common operations on the entities. For example, resetting the internal buffers, writing the buffers to the simulation and updating the buffers from the simulation. The scene does not perform any task specific to the entity. For example, it does not apply actions to the robot or compute observations from the robot. These tasks are handled by different modules called "managers" in the framework. Please refer to the :mod:`omni.isaac.orbit.managers` sub-package for more details. """ def __init__(self, cfg: InteractiveSceneCfg): """Initializes the scene. Args: cfg: The configuration class for the scene. """ # store inputs self.cfg = cfg # initialize scene elements self._terrain = None self._articulations = dict() self._rigid_objects = dict() self._sensors = dict() self._extras = dict() # obtain the current stage self.stage = omni.usd.get_context().get_stage() # prepare cloner for environment replication self.cloner = GridCloner(spacing=self.cfg.env_spacing) self.cloner.define_base_env(self.env_ns) self.env_prim_paths = self.cloner.generate_paths(f"{self.env_ns}/env", self.cfg.num_envs) # create source prim self.stage.DefinePrim(self.env_prim_paths[0], "Xform") # clone the env xform env_origins = self.cloner.clone( source_prim_path=self.env_prim_paths[0], prim_paths=self.env_prim_paths, replicate_physics=False, copy_from_source=True, ) self._default_env_origins = torch.tensor(env_origins, device=self.device, dtype=torch.float32) # add entities from config self._add_entities_from_cfg() # replicate physics if we have more than one environment # this is done to make scene initialization faster at play time if self.cfg.replicate_physics and self.cfg.num_envs > 1: self.cloner.replicate_physics( source_prim_path=self.env_prim_paths[0], prim_paths=self.env_prim_paths, base_env_path=self.env_ns, root_path=self.env_regex_ns.replace(".*", ""), ) # obtain the current physics scene physics_scene_prim_path = None for prim in self.stage.Traverse(): if prim.HasAPI(PhysxSchema.PhysxSceneAPI): physics_scene_prim_path = prim.GetPrimPath() carb.log_info(f"Physics scene prim path: {physics_scene_prim_path}") break # filter collisions within each environment instance self.cloner.filter_collisions( physics_scene_prim_path, "/World/collisions", self.env_prim_paths, global_paths=self._global_prim_paths, ) def __str__(self) -> str: """Returns a string representation of the scene.""" msg = f"<class {self.__class__.__name__}>\n" msg += f"\tNumber of environments: {self.cfg.num_envs}\n" msg += f"\tEnvironment spacing : {self.cfg.env_spacing}\n" msg += f"\tSource prim name : {self.env_prim_paths[0]}\n" msg += f"\tGlobal prim paths : {self._global_prim_paths}\n" msg += f"\tReplicate physics : {self.cfg.replicate_physics}" return msg """ Properties. """ @property def physics_dt(self) -> float: """The physics timestep of the scene.""" return sim_utils.SimulationContext.instance().get_physics_dt() # pyright: ignore [reportOptionalMemberAccess] @property def device(self) -> str: """The device on which the scene is created.""" return sim_utils.SimulationContext.instance().device # pyright: ignore [reportOptionalMemberAccess] @property def env_ns(self) -> str: """The namespace ``/World/envs`` in which all environments created. The environments are present w.r.t. this namespace under "env_{N}" prim, where N is a natural number. """ return "/World/envs" @property def env_regex_ns(self) -> str: """The namespace ``/World/envs/env_.*`` in which all environments created.""" return f"{self.env_ns}/env_.*" @property def num_envs(self) -> int: """The number of environments handled by the scene.""" return self.cfg.num_envs @property def env_origins(self) -> torch.Tensor: """The origins of the environments in the scene. Shape is (num_envs, 3).""" if self._terrain is not None: return self._terrain.env_origins else: return self._default_env_origins @property def terrain(self) -> TerrainImporter | None: """The terrain in the scene. If None, then the scene has no terrain. Note: We treat terrain separate from :attr:`extras` since terrains define environment origins and are handled differently from other miscellaneous entities. """ return self._terrain @property def articulations(self) -> dict[str, Articulation]: """A dictionary of articulations in the scene.""" return self._articulations @property def rigid_objects(self) -> dict[str, RigidObject]: """A dictionary of rigid objects in the scene.""" return self._rigid_objects @property def sensors(self) -> dict[str, SensorBase]: """A dictionary of the sensors in the scene, such as cameras and contact reporters.""" return self._sensors @property def extras(self) -> dict[str, XFormPrimView]: """A dictionary of miscellaneous simulation objects that neither inherit from assets nor sensors. The keys are the names of the miscellaneous objects, and the values are the `XFormPrimView`_ of the corresponding prims. As an example, lights or other props in the scene that do not have any attributes or properties that you want to alter at runtime can be added to this dictionary. Note: These are not reset or updated by the scene. They are mainly other prims that are not necessarily handled by the interactive scene, but are useful to be accessed by the user. .. _XFormPrimView: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#omni.isaac.core.prims.XFormPrimView """ return self._extras """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None): """Resets the scene entities. Args: env_ids: The indices of the environments to reset. Defaults to None (all instances). """ # -- assets for articulation in self._articulations.values(): articulation.reset(env_ids) for rigid_object in self._rigid_objects.values(): rigid_object.reset(env_ids) # -- sensors for sensor in self._sensors.values(): sensor.reset(env_ids) # -- flush physics sim view if called in extension mode # this is needed when using PhysX GPU pipeline since the data needs to be sent to the underlying # PhysX buffers that might live on a separate device # note: In standalone mode, this method is called in the `step()` method of the simulation context. # So we only need to flush when running in extension mode. if builtins.ISAAC_LAUNCHED_FROM_TERMINAL: sim_utils.SimulationContext.instance().physics_sim_view.flush() # pyright: ignore [reportOptionalMemberAccess] def write_data_to_sim(self): """Writes the data of the scene entities to the simulation.""" # -- assets for articulation in self._articulations.values(): articulation.write_data_to_sim() for rigid_object in self._rigid_objects.values(): rigid_object.write_data_to_sim() # -- flush physics sim view if called in extension mode # this is needed when using PhysX GPU pipeline since the data needs to be sent to the underlying # PhysX buffers that might live on a separate device # note: In standalone mode, this method is called in the `step()` method of the simulation context. # So we only need to flush when running in extension mode. if builtins.ISAAC_LAUNCHED_FROM_TERMINAL: sim_utils.SimulationContext.instance().physics_sim_view.flush() # pyright: ignore [reportOptionalMemberAccess] def update(self, dt: float) -> None: """Update the scene entities. Args: dt: The amount of time passed from last :meth:`update` call. """ # -- assets for articulation in self._articulations.values(): articulation.update(dt) for rigid_object in self._rigid_objects.values(): rigid_object.update(dt) # -- sensors for sensor in self._sensors.values(): sensor.update(dt, force_recompute=not self.cfg.lazy_sensor_update) """ Operations: Iteration. """ def keys(self) -> list[str]: """Returns the keys of the scene entities. Returns: The keys of the scene entities. """ all_keys = ["terrain"] for asset_family in [self._articulations, self._rigid_objects, self._sensors, self._extras]: all_keys += list(asset_family.keys()) return all_keys def __getitem__(self, key: str) -> Any: """Returns the scene entity with the given key. Args: key: The key of the scene entity. Returns: The scene entity. """ # check if it is a terrain if key == "terrain": return self._terrain all_keys = ["terrain"] # check if it is in other dictionaries for asset_family in [self._articulations, self._rigid_objects, self._sensors, self._extras]: out = asset_family.get(key) # if found, return if out is not None: return out all_keys += list(asset_family.keys()) # if not found, raise error raise KeyError(f"Scene entity with key '{key}' not found. Available Entities: '{all_keys}'") """ Internal methods. """ def _add_entities_from_cfg(self): """Add scene entities from the config.""" # store paths that are in global collision filter self._global_prim_paths = list() # parse the entire scene config and resolve regex for asset_name, asset_cfg in self.cfg.__dict__.items(): # skip keywords # note: easier than writing a list of keywords: [num_envs, env_spacing, lazy_sensor_update] if asset_name in InteractiveSceneCfg.__dataclass_fields__ or asset_cfg is None: continue # resolve regex asset_cfg.prim_path = asset_cfg.prim_path.format(ENV_REGEX_NS=self.env_regex_ns) # create asset if isinstance(asset_cfg, TerrainImporterCfg): # terrains are special entities since they define environment origins asset_cfg.num_envs = self.cfg.num_envs asset_cfg.env_spacing = self.cfg.env_spacing self._terrain = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, ArticulationCfg): self._articulations[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, RigidObjectCfg): self._rigid_objects[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, SensorBaseCfg): # Update target frame path(s)' regex name space for FrameTransformer if isinstance(asset_cfg, FrameTransformerCfg): updated_target_frames = [] for target_frame in asset_cfg.target_frames: target_frame.prim_path = target_frame.prim_path.format(ENV_REGEX_NS=self.env_regex_ns) updated_target_frames.append(target_frame) asset_cfg.target_frames = updated_target_frames self._sensors[asset_name] = asset_cfg.class_type(asset_cfg) elif isinstance(asset_cfg, AssetBaseCfg): # manually spawn asset if asset_cfg.spawn is not None: asset_cfg.spawn.func( asset_cfg.prim_path, asset_cfg.spawn, translation=asset_cfg.init_state.pos, orientation=asset_cfg.init_state.rot, ) # store xform prim view corresponding to this asset # all prims in the scene are Xform prims (i.e. have a transform component) self._extras[asset_name] = XFormPrimView(asset_cfg.prim_path, reset_xform_properties=False) else: raise ValueError(f"Unknown asset config type for {asset_name}: {asset_cfg}") # store global collision paths if hasattr(asset_cfg, "collision_group") and asset_cfg.collision_group == -1: asset_paths = sim_utils.find_matching_prim_paths(asset_cfg.prim_path) self._global_prim_paths += asset_paths
15,551
Python
40.69437
158
0.626262
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/scene/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package containing an interactive scene definition. A scene is a collection of entities (e.g., terrain, articulations, sensors, lights, etc.) that can be added to the simulation. However, only a subset of these entities are of direct interest for the user to interact with. For example, the user may want to interact with a robot in the scene, but not with the terrain or the lights. For this reason, we integrate the different entities into a single class called :class:`InteractiveScene`. The interactive scene performs the following tasks: 1. It parses the configuration class :class:`InteractiveSceneCfg` to create the scene. This configuration class is inherited by the user to add entities to the scene. 2. It clones the entities based on the number of environments specified by the user. 3. It clubs the entities into different groups based on their type (e.g., articulations, sensors, etc.). 4. It provides a set of methods to unify the common operations on the entities in the scene (e.g., resetting internal buffers, writing buffers to simulation and updating buffers from simulation). The interactive scene can be passed around to different modules in the framework to perform different tasks. For instance, computing the observations based on the state of the scene, or randomizing the scene, or applying actions to the scene. All these are handled by different "managers" in the framework. Please refer to the :mod:`omni.isaac.orbit.managers` sub-package for more details. """ from .interactive_scene import InteractiveScene from .interactive_scene_cfg import InteractiveSceneCfg
1,734
Python
56.833331
117
0.790657
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_generator_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Configuration classes defining the different terrains available. Each configuration class must inherit from ``omni.isaac.orbit.terrains.terrains_cfg.TerrainConfig`` and define the following attributes: - ``name``: Name of the terrain. This is used for the prim name in the USD stage. - ``function``: Function to generate the terrain. This function must take as input the terrain difficulty and the configuration parameters and return a `tuple with the `trimesh`` mesh object and terrain origin. """ from __future__ import annotations import numpy as np import trimesh from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.orbit.utils import configclass @configclass class FlatPatchSamplingCfg: """Configuration for sampling flat patches on the sub-terrain. For a given sub-terrain, this configuration specifies how to sample flat patches on the terrain. The sampled flat patches can be used for spawning robots, targets, etc. Please check the function :meth:`~omni.isaac.orbit.terrains.utils.find_flat_patches` for more details. """ num_patches: int = MISSING """Number of patches to sample.""" patch_radius: float | list[float] = MISSING """Radius of the patches. A list of radii can be provided to check for patches of different sizes. This is useful to deal with cases where the terrain may have holes or obstacles in some areas. """ x_range: tuple[float, float] = (-1e6, 1e6) """The range of x-coordinates to sample from. Defaults to (-1e6, 1e6). This range is internally clamped to the size of the terrain mesh. """ y_range: tuple[float, float] = (-1e6, 1e6) """The range of y-coordinates to sample from. Defaults to (-1e6, 1e6). This range is internally clamped to the size of the terrain mesh. """ z_range: tuple[float, float] = (-1e6, 1e6) """Allowed range of z-coordinates for the sampled patch. Defaults to (-1e6, 1e6).""" max_height_diff: float = MISSING """Maximum allowed height difference between the highest and lowest points on the patch.""" @configclass class SubTerrainBaseCfg: """Base class for terrain configurations. All the sub-terrain configurations must inherit from this class. The :attr:`size` attribute is the size of the generated sub-terrain. Based on this, the terrain must extend from :math:`(0, 0)` to :math:`(size[0], size[1])`. """ function: Callable[[float, SubTerrainBaseCfg], tuple[list[trimesh.Trimesh], np.ndarray]] = MISSING """Function to generate the terrain. This function must take as input the terrain difficulty and the configuration parameters and return a tuple with a list of ``trimesh`` mesh objects and the terrain origin. """ proportion: float = 1.0 """Proportion of the terrain to generate. Defaults to 1.0. This is used to generate a mix of terrains. The proportion corresponds to the probability of sampling the particular terrain. For example, if there are two terrains, A and B, with proportions 0.3 and 0.7, respectively, then the probability of sampling terrain A is 0.3 and the probability of sampling terrain B is 0.7. """ size: tuple[float, float] = MISSING """The width (along x) and length (along y) of the terrain (in m).""" flat_patch_sampling: dict[str, FlatPatchSamplingCfg] | None = None """Dictionary of configurations for sampling flat patches on the sub-terrain. Defaults to None, in which case no flat patch sampling is performed. The keys correspond to the name of the flat patch sampling configuration and the values are the corresponding configurations. """ @configclass class TerrainGeneratorCfg: """Configuration for the terrain generator.""" seed: int | None = None """The seed for the random number generator. Defaults to None, in which case the seed is not set.""" curriculum: bool = False """Whether to use the curriculum mode. Defaults to False. If True, the terrains are generated based on their difficulty parameter. Otherwise, they are randomly generated. """ size: tuple[float, float] = MISSING """The width (along x) and length (along y) of each sub-terrain (in m). Note: This value is passed on to all the sub-terrain configurations. """ border_width: float = 0.0 """The width of the border around the terrain (in m). Defaults to 0.0.""" num_rows: int = 1 """Number of rows of sub-terrains to generate. Defaults to 1.""" num_cols: int = 1 """Number of columns of sub-terrains to generate. Defaults to 1.""" color_scheme: Literal["height", "random", "none"] = "none" """Color scheme to use for the terrain. Defaults to "none". The available color schemes are: - "height": Color based on the height of the terrain. - "random": Random color scheme. - "none": No color scheme. """ horizontal_scale: float = 0.1 """The discretization of the terrain along the x and y axes (in m). Defaults to 0.1. This value is passed on to all the height field sub-terrain configurations. """ vertical_scale: float = 0.005 """The discretization of the terrain along the z axis (in m). Defaults to 0.005. This value is passed on to all the height field sub-terrain configurations. """ slope_threshold: float | None = 0.75 """The slope threshold above which surfaces are made vertical. Defaults to 0.75. If None no correction is applied. This value is passed on to all the height field sub-terrain configurations. """ sub_terrains: dict[str, SubTerrainBaseCfg] = MISSING """Dictionary of sub-terrain configurations. The keys correspond to the name of the sub-terrain configuration and the values are the corresponding configurations. """ difficulty_range: tuple[float, float] = (0.0, 1.0) """The range of difficulty values for the sub-terrains. Defaults to (0.0, 1.0). If curriculum is enabled, the terrains will be generated based on this range in ascending order of difficulty. Otherwise, the terrains will be generated based on this range in a random order. """ use_cache: bool = False """Whether to load the terrain from cache if it exists. Defaults to True.""" cache_dir: str = "/tmp/orbit/terrains" """The directory where the terrain cache is stored. Defaults to "/tmp/orbit/terrains"."""
6,616
Python
35.15847
109
0.702086
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_importer_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import TYPE_CHECKING, Literal import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.utils import configclass from .terrain_importer import TerrainImporter if TYPE_CHECKING: from .terrain_generator_cfg import TerrainGeneratorCfg @configclass class TerrainImporterCfg: """Configuration for the terrain manager.""" class_type: type = TerrainImporter """The class to use for the terrain importer. Defaults to :class:`omni.isaac.orbit.terrains.terrain_importer.TerrainImporter`. """ collision_group: int = -1 """The collision group of the terrain. Defaults to -1.""" prim_path: str = MISSING """The absolute path of the USD terrain prim. All sub-terrains are imported relative to this prim path. """ num_envs: int = MISSING """The number of environment origins to consider.""" terrain_type: Literal["generator", "plane", "usd"] = "generator" """The type of terrain to generate. Defaults to "generator". Available options are "plane", "usd", and "generator". """ terrain_generator: TerrainGeneratorCfg | None = None """The terrain generator configuration. Only used if ``terrain_type`` is set to "generator". """ usd_path: str | None = None """The path to the USD file containing the terrain. Only used if ``terrain_type`` is set to "usd". """ env_spacing: float | None = None """The spacing between environment origins when defined in a grid. Defaults to None. Note: This parameter is used only when the ``terrain_type`` is ``"plane"`` or ``"usd"``. """ visual_material: sim_utils.VisualMaterialCfg | None = sim_utils.PreviewSurfaceCfg( diffuse_color=(0.065, 0.0725, 0.080) ) """The visual material of the terrain. Defaults to a dark gray color material. The material is created at the path: ``{prim_path}/visualMaterial``. If `None`, then no material is created. .. note:: This parameter is used only when the ``terrain_type`` is ``"generator"``. """ physics_material: sim_utils.RigidBodyMaterialCfg = sim_utils.RigidBodyMaterialCfg() """The physics material of the terrain. Defaults to a default physics material. The material is created at the path: ``{prim_path}/physicsMaterial``. .. note:: This parameter is used only when the ``terrain_type`` is ``"generator"`` or ``"plane"``. """ max_init_terrain_level: int | None = None """The maximum initial terrain level for defining environment origins. Defaults to None. The terrain levels are specified by the number of rows in the grid arrangement of sub-terrains. If None, then the initial terrain level is set to the maximum terrain level available (``num_rows - 1``). Note: This parameter is used only when sub-terrain origins are defined. """ debug_vis: bool = False """Whether to enable visualization of terrain origins for the terrain. Defaults to False."""
3,187
Python
30.88
112
0.685284
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_generator.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import os import torch import trimesh import carb from omni.isaac.orbit.utils.dict import dict_to_md5_hash from omni.isaac.orbit.utils.io import dump_yaml from omni.isaac.orbit.utils.timer import Timer from omni.isaac.orbit.utils.warp import convert_to_warp_mesh from .height_field import HfTerrainBaseCfg from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg from .trimesh.utils import make_border from .utils import color_meshes_by_height, find_flat_patches class TerrainGenerator: """Terrain generator to handle different terrain generation functions. The terrains are represented as meshes. These are obtained either from height fields or by using the `trimesh <https://trimsh.org/trimesh.html>`__ library. The height field representation is more flexible, but it is less computationally and memory efficient than the trimesh representation. All terrain generation functions take in the argument :obj:`difficulty` which determines the complexity of the terrain. The difficulty is a number between 0 and 1, where 0 is the easiest and 1 is the hardest. In most cases, the difficulty is used for linear interpolation between different terrain parameters. For example, in a pyramid stairs terrain the step height is interpolated between the specified minimum and maximum step height. Each sub-terrain has a corresponding configuration class that can be used to specify the parameters of the terrain. The configuration classes are inherited from the :class:`SubTerrainBaseCfg` class which contains the common parameters for all terrains. If a curriculum is used, the terrains are generated based on their difficulty parameter. The difficulty is varied linearly over the number of rows (i.e. along x). If a curriculum is not used, the terrains are generated randomly. If the :obj:`cfg.flat_patch_sampling` is specified for a sub-terrain, flat patches are sampled on the terrain. These can be used for spawning robots, targets, etc. The sampled patches are stored in the :obj:`flat_patches` dictionary. The key specifies the intention of the flat patches and the value is a tensor containing the flat patches for each sub-terrain. If the flag :obj:`cfg.use_cache` is set to True, the terrains are cached based on their sub-terrain configurations. This means that if the same sub-terrain configuration is used multiple times, the terrain is only generated once and then reused. This is useful when generating complex sub-terrains that take a long time to generate. """ terrain_mesh: trimesh.Trimesh """A single trimesh.Trimesh object for all the generated sub-terrains.""" terrain_meshes: list[trimesh.Trimesh] """List of trimesh.Trimesh objects for all the generated sub-terrains.""" terrain_origins: np.ndarray """The origin of each sub-terrain. Shape is (num_rows, num_cols, 3).""" flat_patches: dict[str, torch.Tensor] """A dictionary of sampled valid (flat) patches for each sub-terrain. The dictionary keys are the names of the flat patch sampling configurations. This maps to a tensor containing the flat patches for each sub-terrain. The shape of the tensor is (num_rows, num_cols, num_patches, 3). For instance, the key "root_spawn" maps to a tensor containing the flat patches for spawning an asset. Similarly, the key "target_spawn" maps to a tensor containing the flat patches for setting targets. """ def __init__(self, cfg: TerrainGeneratorCfg, device: str = "cpu"): """Initialize the terrain generator. Args: cfg: Configuration for the terrain generator. device: The device to use for the flat patches tensor. """ # check inputs if len(cfg.sub_terrains) == 0: raise ValueError("No sub-terrains specified! Please add at least one sub-terrain.") # store inputs self.cfg = cfg self.device = device # -- valid patches self.flat_patches = {} # set common values to all sub-terrains config for sub_cfg in self.cfg.sub_terrains.values(): # size of all terrains sub_cfg.size = self.cfg.size # params for height field terrains if isinstance(sub_cfg, HfTerrainBaseCfg): sub_cfg.horizontal_scale = self.cfg.horizontal_scale sub_cfg.vertical_scale = self.cfg.vertical_scale sub_cfg.slope_threshold = self.cfg.slope_threshold # set the seed for reproducibility if self.cfg.seed is not None: torch.manual_seed(self.cfg.seed) np.random.seed(self.cfg.seed) # create a list of all sub-terrains self.terrain_meshes = list() self.terrain_origins = np.zeros((self.cfg.num_rows, self.cfg.num_cols, 3)) # parse configuration and add sub-terrains # create terrains based on curriculum or randomly if self.cfg.curriculum: with Timer("[INFO] Generating terrains based on curriculum took"): self._generate_curriculum_terrains() else: with Timer("[INFO] Generating terrains randomly took"): self._generate_random_terrains() # add a border around the terrains self._add_terrain_border() # combine all the sub-terrains into a single mesh self.terrain_mesh = trimesh.util.concatenate(self.terrain_meshes) # color the terrain mesh if self.cfg.color_scheme == "height": self.terrain_mesh = color_meshes_by_height(self.terrain_mesh) elif self.cfg.color_scheme == "random": self.terrain_mesh.visual.vertex_colors = np.random.choice( range(256), size=(len(self.terrain_mesh.vertices), 4) ) elif self.cfg.color_scheme == "none": pass else: raise ValueError(f"Invalid color scheme: {self.cfg.color_scheme}.") # offset the entire terrain and origins so that it is centered # -- terrain mesh transform = np.eye(4) transform[:2, -1] = -self.cfg.size[0] * self.cfg.num_rows * 0.5, -self.cfg.size[1] * self.cfg.num_cols * 0.5 self.terrain_mesh.apply_transform(transform) # -- terrain origins self.terrain_origins += transform[:3, -1] # -- valid patches terrain_origins_torch = torch.tensor(self.terrain_origins, dtype=torch.float, device=self.device).unsqueeze(2) for name, value in self.flat_patches.items(): self.flat_patches[name] = value + terrain_origins_torch """ Terrain generator functions. """ def _generate_random_terrains(self): """Add terrains based on randomly sampled difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # randomly sample sub-terrains for index in range(self.cfg.num_rows * self.cfg.num_cols): # coordinate index of the sub-terrain (sub_row, sub_col) = np.unravel_index(index, (self.cfg.num_rows, self.cfg.num_cols)) # randomly sample terrain index sub_index = np.random.choice(len(proportions), p=proportions) # randomly sample difficulty parameter difficulty = np.random.uniform(*self.cfg.difficulty_range) # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_index]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_index]) def _generate_curriculum_terrains(self): """Add terrains based on the difficulty parameter.""" # normalize the proportions of the sub-terrains proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()]) proportions /= np.sum(proportions) # find the sub-terrain index for each column # we generate the terrains based on their proportion (not randomly sampled) sub_indices = [] for index in range(self.cfg.num_cols): sub_index = np.min(np.where(index / self.cfg.num_cols + 0.001 < np.cumsum(proportions))[0]) sub_indices.append(sub_index) sub_indices = np.array(sub_indices, dtype=np.int32) # create a list of all terrain configs sub_terrains_cfgs = list(self.cfg.sub_terrains.values()) # curriculum-based sub-terrains for sub_col in range(self.cfg.num_cols): for sub_row in range(self.cfg.num_rows): # vary the difficulty parameter linearly over the number of rows lower, upper = self.cfg.difficulty_range difficulty = (sub_row + np.random.uniform()) / self.cfg.num_rows difficulty = lower + (upper - lower) * difficulty # generate terrain mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_indices[sub_col]]) # add to sub-terrains self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_indices[sub_col]]) """ Internal helper functions. """ def _add_terrain_border(self): """Add a surrounding border over all the sub-terrains into the terrain meshes.""" # border parameters border_size = ( self.cfg.num_rows * self.cfg.size[0] + 2 * self.cfg.border_width, self.cfg.num_cols * self.cfg.size[1] + 2 * self.cfg.border_width, ) inner_size = (self.cfg.num_rows * self.cfg.size[0], self.cfg.num_cols * self.cfg.size[1]) border_center = (self.cfg.num_rows * self.cfg.size[0] / 2, self.cfg.num_cols * self.cfg.size[1] / 2, -0.5) # border mesh border_meshes = make_border(border_size, inner_size, height=1.0, position=border_center) border = trimesh.util.concatenate(border_meshes) # update the faces to have minimal triangles selector = ~(np.asarray(border.triangles)[:, :, 2] < -0.1).any(1) border.update_faces(selector) # add the border to the list of meshes self.terrain_meshes.append(border) def _add_sub_terrain( self, mesh: trimesh.Trimesh, origin: np.ndarray, row: int, col: int, sub_terrain_cfg: SubTerrainBaseCfg ): """Add input sub-terrain to the list of sub-terrains. This function adds the input sub-terrain mesh to the list of sub-terrains and updates the origin of the sub-terrain in the list of origins. It also samples flat patches if specified. Args: mesh: The mesh of the sub-terrain. origin: The origin of the sub-terrain. row: The row index of the sub-terrain. col: The column index of the sub-terrain. """ # sample flat patches if specified if sub_terrain_cfg.flat_patch_sampling is not None: carb.log_info(f"Sampling flat patches for sub-terrain at (row, col): ({row}, {col})") # convert the mesh to warp mesh wp_mesh = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=self.device) # sample flat patches based on each patch configuration for that sub-terrain for name, patch_cfg in sub_terrain_cfg.flat_patch_sampling.items(): patch_cfg: FlatPatchSamplingCfg # create the flat patches tensor (if not already created) if name not in self.flat_patches: self.flat_patches[name] = torch.zeros( (self.cfg.num_rows, self.cfg.num_cols, patch_cfg.num_patches, 3), device=self.device ) # add the flat patches to the tensor self.flat_patches[name][row, col] = find_flat_patches( wp_mesh=wp_mesh, origin=origin, num_patches=patch_cfg.num_patches, patch_radius=patch_cfg.patch_radius, x_range=patch_cfg.x_range, y_range=patch_cfg.y_range, z_range=patch_cfg.z_range, max_height_diff=patch_cfg.max_height_diff, ) # transform the mesh to the correct position transform = np.eye(4) transform[0:2, -1] = (row + 0.5) * self.cfg.size[0], (col + 0.5) * self.cfg.size[1] mesh.apply_transform(transform) # add mesh to the list self.terrain_meshes.append(mesh) # add origin to the list self.terrain_origins[row, col] = origin + transform[:3, -1] def _get_terrain_mesh(self, difficulty: float, cfg: SubTerrainBaseCfg) -> tuple[trimesh.Trimesh, np.ndarray]: """Generate a sub-terrain mesh based on the input difficulty parameter. If caching is enabled, the sub-terrain is cached and loaded from the cache if it exists. The cache is stored in the cache directory specified in the configuration. .. Note: This function centers the 2D center of the mesh and its specified origin such that the 2D center becomes :math:`(0, 0)` instead of :math:`(size[0] / 2, size[1] / 2). Args: difficulty: The difficulty parameter. cfg: The configuration of the sub-terrain. Returns: The sub-terrain mesh and origin. """ # add other parameters to the sub-terrain configuration cfg.difficulty = float(difficulty) cfg.seed = self.cfg.seed # generate hash for the sub-terrain sub_terrain_hash = dict_to_md5_hash(cfg.to_dict()) # generate the file name sub_terrain_cache_dir = os.path.join(self.cfg.cache_dir, sub_terrain_hash) sub_terrain_stl_filename = os.path.join(sub_terrain_cache_dir, "mesh.stl") sub_terrain_csv_filename = os.path.join(sub_terrain_cache_dir, "origin.csv") sub_terrain_meta_filename = os.path.join(sub_terrain_cache_dir, "cfg.yaml") # check if hash exists - if true, load the mesh and origin and return if self.cfg.use_cache and os.path.exists(sub_terrain_stl_filename): # load existing mesh mesh = trimesh.load_mesh(sub_terrain_stl_filename) origin = np.loadtxt(sub_terrain_csv_filename, delimiter=",") # return the generated mesh return mesh, origin # generate the terrain meshes, origin = cfg.function(difficulty, cfg) mesh = trimesh.util.concatenate(meshes) # offset mesh such that they are in their center transform = np.eye(4) transform[0:2, -1] = -cfg.size[0] * 0.5, -cfg.size[1] * 0.5 mesh.apply_transform(transform) # change origin to be in the center of the sub-terrain origin += transform[0:3, -1] # if caching is enabled, save the mesh and origin if self.cfg.use_cache: # create the cache directory os.makedirs(sub_terrain_cache_dir, exist_ok=True) # save the data mesh.export(sub_terrain_stl_filename) np.savetxt(sub_terrain_csv_filename, origin, delimiter=",", header="x,y,z") dump_yaml(sub_terrain_meta_filename, cfg) # return the generated mesh return mesh, origin
15,781
Python
47.709876
118
0.644509
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package with utilities for creating terrains procedurally. There are two main components in this package: * :class:`TerrainGenerator`: This class procedurally generates terrains based on the passed sub-terrain configuration. It creates a ``trimesh`` mesh object and contains the origins of each generated sub-terrain. * :class:`TerrainImporter`: This class mainly deals with importing terrains from different possible sources and adding them to the simulator as a prim object. It also stores the terrain mesh into a dictionary called :obj:`TerrainImporter.warp_meshes` that later can be used for ray-casting. The following functions are available for importing terrains: * :meth:`TerrainImporter.import_ground_plane`: spawn a grid plane which is default in isaacsim/orbit. * :meth:`TerrainImporter.import_mesh`: spawn a prim from a ``trimesh`` object. * :meth:`TerrainImporter.import_usd`: spawn a prim as reference to input USD file. """ from .height_field import * # noqa: F401, F403 from .terrain_generator import TerrainGenerator from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg from .terrain_importer import TerrainImporter from .terrain_importer_cfg import TerrainImporterCfg from .trimesh import * # noqa: F401, F403 from .utils import color_meshes_by_height, create_prim_from_mesh
1,489
Python
47.064515
103
0.785091
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch import trimesh import warp as wp from omni.isaac.orbit.utils.warp import raycast_mesh def color_meshes_by_height(meshes: list[trimesh.Trimesh], **kwargs) -> trimesh.Trimesh: """ Color the vertices of a trimesh object based on the z-coordinate (height) of each vertex, using the Turbo colormap. If the z-coordinates are all the same, the vertices will be colored with a single color. Args: meshes: A list of trimesh objects. Keyword Args: color: A list of 3 integers in the range [0,255] representing the RGB color of the mesh. Used when the z-coordinates of all vertices are the same. color_map: The name of the color map to be used. Defaults to "turbo". Returns: A trimesh object with the vertices colored based on the z-coordinate (height) of each vertex. """ # Combine all meshes into a single mesh mesh = trimesh.util.concatenate(meshes) # Get the z-coordinates of each vertex heights = mesh.vertices[:, 2] # Check if the z-coordinates are all the same if np.max(heights) == np.min(heights): # Obtain a single color: light blue color = kwargs.pop("color", [172, 216, 230, 255]) color = np.asarray(color, dtype=np.uint8) # Set the color for all vertices mesh.visual.vertex_colors = color else: # Normalize the heights to [0,1] heights_normalized = (heights - np.min(heights)) / (np.max(heights) - np.min(heights)) # clip lower and upper bounds to have better color mapping heights_normalized = np.clip(heights_normalized, 0.1, 0.9) # Get the color for each vertex based on the height color_map = kwargs.pop("color_map", "turbo") colors = trimesh.visual.color.interpolate(heights_normalized, color_map=color_map) # Set the vertex colors mesh.visual.vertex_colors = colors # Return the mesh return mesh def create_prim_from_mesh(prim_path: str, mesh: trimesh.Trimesh, **kwargs): """Create a USD prim with mesh defined from vertices and triangles. The function creates a USD prim with a mesh defined from vertices and triangles. It performs the following steps: - Create a USD Xform prim at the path :obj:`prim_path`. - Create a USD prim with a mesh defined from the input vertices and triangles at the path :obj:`{prim_path}/mesh`. - Assign a physics material to the mesh at the path :obj:`{prim_path}/physicsMaterial`. - Assign a visual material to the mesh at the path :obj:`{prim_path}/visualMaterial`. Args: prim_path: The path to the primitive to be created. mesh: The mesh to be used for the primitive. Keyword Args: translation: The translation of the terrain. Defaults to None. orientation: The orientation of the terrain. Defaults to None. visual_material: The visual material to apply. Defaults to None. physics_material: The physics material to apply. Defaults to None. """ # need to import these here to prevent isaacsim launching when importing this module import omni.isaac.core.utils.prims as prim_utils from pxr import UsdGeom import omni.isaac.orbit.sim as sim_utils # create parent prim prim_utils.create_prim(prim_path, "Xform") # create mesh prim prim = prim_utils.create_prim( f"{prim_path}/mesh", "Mesh", translation=kwargs.get("translation"), orientation=kwargs.get("orientation"), attributes={ "points": mesh.vertices, "faceVertexIndices": mesh.faces.flatten(), "faceVertexCounts": np.asarray([3] * len(mesh.faces)), "subdivisionScheme": "bilinear", }, ) # apply collider properties collider_cfg = sim_utils.CollisionPropertiesCfg(collision_enabled=True) sim_utils.define_collision_properties(prim.GetPrimPath(), collider_cfg) # add rgba color to the mesh primvars if mesh.visual.vertex_colors is not None: # obtain color from the mesh rgba_colors = np.asarray(mesh.visual.vertex_colors).astype(np.float32) / 255.0 # displayColor is a primvar attribute that is used to color the mesh color_prim_attr = prim.GetAttribute("primvars:displayColor") color_prim_var = UsdGeom.Primvar(color_prim_attr) color_prim_var.SetInterpolation(UsdGeom.Tokens.vertex) color_prim_attr.Set(rgba_colors[:, :3]) # displayOpacity is a primvar attribute that is used to set the opacity of the mesh display_prim_attr = prim.GetAttribute("primvars:displayOpacity") display_prim_var = UsdGeom.Primvar(display_prim_attr) display_prim_var.SetInterpolation(UsdGeom.Tokens.vertex) display_prim_var.Set(rgba_colors[:, 3]) # create visual material if kwargs.get("visual_material") is not None: visual_material_cfg: sim_utils.VisualMaterialCfg = kwargs.get("visual_material") # spawn the material visual_material_cfg.func(f"{prim_path}/visualMaterial", visual_material_cfg) sim_utils.bind_visual_material(prim.GetPrimPath(), f"{prim_path}/visualMaterial") # create physics material if kwargs.get("physics_material") is not None: physics_material_cfg: sim_utils.RigidBodyMaterialCfg = kwargs.get("physics_material") # spawn the material physics_material_cfg.func(f"{prim_path}/physicsMaterial", physics_material_cfg) sim_utils.bind_physics_material(prim.GetPrimPath(), f"{prim_path}/physicsMaterial") def find_flat_patches( wp_mesh: wp.Mesh, num_patches: int, patch_radius: float | list[float], origin: np.ndarray | torch.Tensor | tuple[float, float, float], x_range: tuple[float, float], y_range: tuple[float, float], z_range: tuple[float, float], max_height_diff: float, ): """Finds flat patches of given radius in the input mesh. The function finds flat patches of given radius based on the search space defined by the input ranges. The search space is characterized by origin in the mesh frame, and the x, y, and z ranges. The x and y ranges are used to sample points in the 2D region around the origin, and the z range is used to filter patches based on the height of the points. The function performs rejection sampling to find the patches based on the following steps: 1. Sample patch locations in the 2D region around the origin. 2. Define a ring of points around each patch location to query the height of the points using ray-casting. 3. Reject patches that are outside the z range or have a height difference that is too large. 4. Keep sampling until all patches are valid. Args: wp_mesh: The warp mesh to find patches in. num_patches: The desired number of patches to find. patch_radius: The radii used to form patches. If a list is provided, multiple patch sizes are checked. This is useful to deal with holes or other artifacts in the mesh. origin: The origin defining the center of the search space. This is specified in the mesh frame. x_range: The range of X coordinates to sample from. y_range: The range of Y coordinates to sample from. z_range: The range of valid Z coordinates used for filtering patches. max_height_diff: The maximum allowable distance between the lowest and highest points on a patch to consider it as valid. If the difference is greater than this value, the patch is rejected. Returns: A tensor of shape (num_patches, 3) containing the flat patches. The patches are defined in the mesh frame. Raises: RuntimeError: If the function fails to find valid patches. This can happen if the input parameters are not suitable for finding valid patches and maximum number of iterations is reached. """ # set device to warp mesh device device = wp.device_to_torch(wp_mesh.device) # resolve inputs to consistent type # -- patch radii if isinstance(patch_radius, float): patch_radius = [patch_radius] # -- origin if isinstance(origin, np.ndarray): origin = torch.from_numpy(origin).to(torch.float).to(device) elif isinstance(origin, torch.Tensor): origin = origin.to(device) else: origin = torch.tensor(origin, dtype=torch.float, device=device) # create ranges for the x and y coordinates around the origin. # The provided ranges are bounded by the mesh's bounding box. x_range = ( max(x_range[0] + origin[0].item(), wp_mesh.points.numpy()[:, 0].min()), min(x_range[1] + origin[0].item(), wp_mesh.points.numpy()[:, 0].max()), ) y_range = ( max(y_range[0] + origin[1].item(), wp_mesh.points.numpy()[:, 1].min()), min(y_range[1] + origin[1].item(), wp_mesh.points.numpy()[:, 1].max()), ) z_range = ( z_range[0] + origin[2].item(), z_range[1] + origin[2].item(), ) # create a circle of points around (0, 0) to query validity of the patches # the ring of points is uniformly distributed around the circle angle = torch.linspace(0, 2 * np.pi, 10, device=device) query_x = [] query_y = [] for radius in patch_radius: query_x.append(radius * torch.cos(angle)) query_y.append(radius * torch.sin(angle)) query_x = torch.cat(query_x).unsqueeze(1) # dim: (num_radii * 10, 1) query_y = torch.cat(query_y).unsqueeze(1) # dim: (num_radii * 10, 1) # dim: (num_radii * 10, 3) query_points = torch.cat([query_x, query_y, torch.zeros_like(query_x)], dim=-1) # create buffers # -- a buffer to store indices of points that are not valid points_ids = torch.arange(num_patches, device=device) # -- a buffer to store the flat patches locations flat_patches = torch.zeros(num_patches, 3, device=device) # sample points and raycast to find the height. # 1. Reject points that are outside the z_range or have a height difference that is too large. # 2. Keep sampling until all points are valid. iter_count = 0 while len(points_ids) > 0 and iter_count < 10000: # sample points in the 2D region around the origin pos_x = torch.empty(len(points_ids), device=device).uniform_(*x_range) pos_y = torch.empty(len(points_ids), device=device).uniform_(*y_range) flat_patches[points_ids, :2] = torch.stack([pos_x, pos_y], dim=-1) # define the query points to check validity of the patch # dim: (num_patches, num_radii * 10, 3) points = flat_patches[points_ids].unsqueeze(1) + query_points points[..., 2] = 100.0 # ray-cast direction is downwards dirs = torch.zeros_like(points) dirs[..., 2] = -1.0 # ray-cast to find the height of the patches ray_hits = raycast_mesh(points.view(-1, 3), dirs.view(-1, 3), wp_mesh)[0] heights = ray_hits.view(points.shape)[..., 2] # set the height of the patches # note: for invalid patches, they would be overwritten in the next iteration # so it's safe to set the height to the last value flat_patches[points_ids, 2] = heights[..., -1] # check validity # -- height is within the z range not_valid = torch.any(torch.logical_or(heights < z_range[0], heights > z_range[1]), dim=1) # -- height difference is within the max height difference not_valid = torch.logical_or(not_valid, (heights.max(dim=1)[0] - heights.min(dim=1)[0]) > max_height_diff) # remove invalid patches indices points_ids = points_ids[not_valid] # increment count iter_count += 1 # check all patches are valid if len(points_ids) > 0: raise RuntimeError( "Failed to find valid patches! Please check the input parameters." f"\n\tMaximum number of iterations reached: {iter_count}" f"\n\tNumber of invalid patches: {len(points_ids)}" f"\n\tMaximum height difference: {max_height_diff}" ) # return the flat patches (in the mesh frame) return flat_patches - origin
12,367
Python
44.138686
118
0.663297
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/terrain_importer.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch import trimesh from typing import TYPE_CHECKING import warp from pxr import UsdGeom import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import FRAME_MARKER_CFG from omni.isaac.orbit.utils.warp import convert_to_warp_mesh from .terrain_generator import TerrainGenerator from .trimesh.utils import make_plane from .utils import create_prim_from_mesh if TYPE_CHECKING: from .terrain_importer_cfg import TerrainImporterCfg class TerrainImporter: r"""A class to handle terrain meshes and import them into the simulator. We assume that a terrain mesh comprises of sub-terrains that are arranged in a grid with rows ``num_rows`` and columns ``num_cols``. The terrain origins are the positions of the sub-terrains where the robot should be spawned. Based on the configuration, the terrain importer handles computing the environment origins from the sub-terrain origins. In a typical setup, the number of sub-terrains (:math:`num\_rows \times num\_cols`) is smaller than the number of environments (:math:`num\_envs`). In this case, the environment origins are computed by sampling the sub-terrain origins. If a curriculum is used, it is possible to update the environment origins to terrain origins that correspond to a harder difficulty. This is done by calling :func:`update_terrain_levels`. The idea comes from game-based curriculum. For example, in a game, the player starts with easy levels and progresses to harder levels. """ meshes: dict[str, trimesh.Trimesh] """A dictionary containing the names of the meshes and their keys.""" warp_meshes: dict[str, warp.Mesh] """A dictionary containing the names of the warp meshes and their keys.""" terrain_origins: torch.Tensor | None """The origins of the sub-terrains in the added terrain mesh. Shape is (num_rows, num_cols, 3). If None, then it is assumed no sub-terrains exist. The environment origins are computed in a grid. """ env_origins: torch.Tensor """The origins of the environments. Shape is (num_envs, 3).""" def __init__(self, cfg: TerrainImporterCfg): """Initialize the terrain importer. Args: cfg: The configuration for the terrain importer. Raises: ValueError: If input terrain type is not supported. ValueError: If terrain type is 'generator' and no configuration provided for ``terrain_generator``. ValueError: If terrain type is 'usd' and no configuration provided for ``usd_path``. ValueError: If terrain type is 'usd' or 'plane' and no configuration provided for ``env_spacing``. """ # store inputs self.cfg = cfg self.device = sim_utils.SimulationContext.instance().device # type: ignore # create a dict of meshes self.meshes = dict() self.warp_meshes = dict() self.env_origins = None self.terrain_origins = None # private variables self._terrain_flat_patches = dict() # auto-import the terrain based on the config if self.cfg.terrain_type == "generator": # check config is provided if self.cfg.terrain_generator is None: raise ValueError("Input terrain type is 'generator' but no value provided for 'terrain_generator'.") # generate the terrain terrain_generator = TerrainGenerator(cfg=self.cfg.terrain_generator, device=self.device) self.import_mesh("terrain", terrain_generator.terrain_mesh) # configure the terrain origins based on the terrain generator self.configure_env_origins(terrain_generator.terrain_origins) # refer to the flat patches self._terrain_flat_patches = terrain_generator.flat_patches elif self.cfg.terrain_type == "usd": # check if config is provided if self.cfg.usd_path is None: raise ValueError("Input terrain type is 'usd' but no value provided for 'usd_path'.") # import the terrain self.import_usd("terrain", self.cfg.usd_path) # configure the origins in a grid self.configure_env_origins() elif self.cfg.terrain_type == "plane": # load the plane self.import_ground_plane("terrain") # configure the origins in a grid self.configure_env_origins() else: raise ValueError(f"Terrain type '{self.cfg.terrain_type}' not available.") # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) """ Properties. """ @property def has_debug_vis_implementation(self) -> bool: """Whether the terrain importer has a debug visualization implemented. This always returns True. """ return True @property def flat_patches(self) -> dict[str, torch.Tensor]: """A dictionary containing the sampled valid (flat) patches for the terrain. This is only available if the terrain type is 'generator'. For other terrain types, this feature is not available and the function returns an empty dictionary. Please refer to the :attr:`TerrainGenerator.flat_patches` for more information. """ return self._terrain_flat_patches """ Operations - Visibility. """ def set_debug_vis(self, debug_vis: bool) -> bool: """Set the debug visualization of the terrain importer. Args: debug_vis: Whether to visualize the terrain origins. Returns: Whether the debug visualization was successfully set. False if the terrain importer does not support debug visualization. Raises: RuntimeError: If terrain origins are not configured. """ # create a marker if necessary if debug_vis: if not hasattr(self, "origin_visualizer"): self.origin_visualizer = VisualizationMarkers( cfg=FRAME_MARKER_CFG.replace(prim_path="/Visuals/TerrainOrigin") ) if self.terrain_origins is not None: self.origin_visualizer.visualize(self.terrain_origins.reshape(-1, 3)) elif self.env_origins is not None: self.origin_visualizer.visualize(self.env_origins.reshape(-1, 3)) else: raise RuntimeError("Terrain origins are not configured.") # set visibility self.origin_visualizer.set_visibility(True) else: if hasattr(self, "origin_visualizer"): self.origin_visualizer.set_visibility(False) # report success return True """ Operations - Import. """ def import_ground_plane(self, key: str, size: tuple[float, float] = (2.0e6, 2.0e6)): """Add a plane to the terrain importer. Args: key: The key to store the mesh. size: The size of the plane. Defaults to (2.0e6, 2.0e6). Raises: ValueError: If a terrain with the same key already exists. """ # check if key exists if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # create a plane mesh = make_plane(size, height=0.0, center_zero=True) # store the mesh self.meshes[key] = mesh # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device) # get the mesh ground_plane_cfg = sim_utils.GroundPlaneCfg(physics_material=self.cfg.physics_material, size=size) ground_plane_cfg.func(self.cfg.prim_path, ground_plane_cfg) def import_mesh(self, key: str, mesh: trimesh.Trimesh): """Import a mesh into the simulator. The mesh is imported into the simulator under the prim path ``cfg.prim_path/{key}``. The created path contains the mesh as a :class:`pxr.UsdGeom` instance along with visual or physics material prims. Args: key: The key to store the mesh. mesh: The mesh to import. Raises: ValueError: If a terrain with the same key already exists. """ # check if key exists if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # store the mesh self.meshes[key] = mesh # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device) # get the mesh mesh = self.meshes[key] mesh_prim_path = self.cfg.prim_path + f"/{key}" # import the mesh create_prim_from_mesh( mesh_prim_path, mesh, visual_material=self.cfg.visual_material, physics_material=self.cfg.physics_material, ) def import_usd(self, key: str, usd_path: str): """Import a mesh from a USD file. We assume that the USD file contains a single mesh. If the USD file contains multiple meshes, then the first mesh is used. The function mainly helps in registering the mesh into the warp meshes and the meshes dictionary. Note: We do not apply any material properties to the mesh. The material properties should be defined in the USD file. Args: key: The key to store the mesh. usd_path: The path to the USD file. Raises: ValueError: If a terrain with the same key already exists. """ # add mesh to the dict if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # add the prim path cfg = sim_utils.UsdFileCfg(usd_path=usd_path) cfg.func(self.cfg.prim_path + f"/{key}", cfg) # traverse the prim and get the collision mesh # THINK: Should the user specify the collision mesh? mesh_prim = sim_utils.get_first_matching_child_prim( self.cfg.prim_path + f"/{key}", lambda prim: prim.GetTypeName() == "Mesh" ) # check if the mesh is valid if mesh_prim is None: raise ValueError(f"Could not find any collision mesh in {usd_path}. Please check asset.") # cast into UsdGeomMesh mesh_prim = UsdGeom.Mesh(mesh_prim) # store the mesh vertices = np.asarray(mesh_prim.GetPointsAttr().Get()) faces = np.asarray(mesh_prim.GetFaceVertexIndicesAttr().Get()).reshape(-1, 3) self.meshes[key] = trimesh.Trimesh(vertices=vertices, faces=faces) # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[key] = convert_to_warp_mesh(vertices, faces, device=device) """ Operations - Origins. """ def configure_env_origins(self, origins: np.ndarray | None = None): """Configure the origins of the environments based on the added terrain. Args: origins: The origins of the sub-terrains. Shape is (num_rows, num_cols, 3). """ # decide whether to compute origins in a grid or based on curriculum if origins is not None: # convert to numpy if isinstance(origins, np.ndarray): origins = torch.from_numpy(origins) # store the origins self.terrain_origins = origins.to(self.device, dtype=torch.float) # compute environment origins self.env_origins = self._compute_env_origins_curriculum(self.cfg.num_envs, self.terrain_origins) else: self.terrain_origins = None # check if env spacing is valid if self.cfg.env_spacing is None: raise ValueError("Environment spacing must be specified for configuring grid-like origins.") # compute environment origins self.env_origins = self._compute_env_origins_grid(self.cfg.num_envs, self.cfg.env_spacing) def update_env_origins(self, env_ids: torch.Tensor, move_up: torch.Tensor, move_down: torch.Tensor): """Update the environment origins based on the terrain levels.""" # check if grid-like spawning if self.terrain_origins is None: return # update terrain level for the envs self.terrain_levels[env_ids] += 1 * move_up - 1 * move_down # robots that solve the last level are sent to a random one # the minimum level is zero self.terrain_levels[env_ids] = torch.where( self.terrain_levels[env_ids] >= self.max_terrain_level, torch.randint_like(self.terrain_levels[env_ids], self.max_terrain_level), torch.clip(self.terrain_levels[env_ids], 0), ) # update the env origins self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] """ Internal helpers. """ def _compute_env_origins_curriculum(self, num_envs: int, origins: torch.Tensor) -> torch.Tensor: """Compute the origins of the environments defined by the sub-terrains origins.""" # extract number of rows and cols num_rows, num_cols = origins.shape[:2] # maximum initial level possible for the terrains if self.cfg.max_init_terrain_level is None: max_init_level = num_rows - 1 else: max_init_level = min(self.cfg.max_init_terrain_level, num_rows - 1) # store maximum terrain level possible self.max_terrain_level = num_rows # define all terrain levels and types available self.terrain_levels = torch.randint(0, max_init_level + 1, (num_envs,), device=self.device) self.terrain_types = torch.div( torch.arange(num_envs, device=self.device), (num_envs / num_cols), rounding_mode="floor", ).to(torch.long) # create tensor based on number of environments env_origins = torch.zeros(num_envs, 3, device=self.device) env_origins[:] = origins[self.terrain_levels, self.terrain_types] return env_origins def _compute_env_origins_grid(self, num_envs: int, env_spacing: float) -> torch.Tensor: """Compute the origins of the environments in a grid based on configured spacing.""" # create tensor based on number of environments env_origins = torch.zeros(num_envs, 3, device=self.device) # create a grid of origins num_rows = np.ceil(num_envs / int(np.sqrt(num_envs))) num_cols = np.ceil(num_envs / num_rows) ii, jj = torch.meshgrid( torch.arange(num_rows, device=self.device), torch.arange(num_cols, device=self.device), indexing="ij" ) env_origins[:, 0] = -(ii.flatten()[:num_envs] - (num_rows - 1) / 2) * env_spacing env_origins[:, 1] = (jj.flatten()[:num_envs] - (num_cols - 1) / 2) * env_spacing env_origins[:, 2] = 0.0 return env_origins
15,546
Python
41.829201
116
0.632253
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This sub-module provides methods to create different terrains using the ``trimesh`` library. In contrast to the height-field representation, the trimesh representation does not create arbitrarily small triangles. Instead, the terrain is represented as a single tri-mesh primitive. Thus, this representation is more computationally and memory efficient than the height-field representation, but it is not as flexible. """ from .mesh_terrains_cfg import ( MeshBoxTerrainCfg, MeshFloatingRingTerrainCfg, MeshGapTerrainCfg, MeshInvertedPyramidStairsTerrainCfg, MeshPitTerrainCfg, MeshPlaneTerrainCfg, MeshPyramidStairsTerrainCfg, MeshRailsTerrainCfg, MeshRandomGridTerrainCfg, MeshRepeatedBoxesTerrainCfg, MeshRepeatedCylindersTerrainCfg, MeshRepeatedPyramidsTerrainCfg, MeshStarTerrainCfg, )
970
Python
31.366666
92
0.791753
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/mesh_terrains.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions to generate different terrains using the ``trimesh`` library.""" from __future__ import annotations import numpy as np import scipy.spatial.transform as tf import torch import trimesh from typing import TYPE_CHECKING from .utils import * # noqa: F401, F403 from .utils import make_border, make_plane if TYPE_CHECKING: from . import mesh_terrains_cfg def flat_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPlaneTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a flat terrain as a plane. .. image:: ../../_static/terrains/trimesh/flat_terrain.jpg :width: 45% :align: center Note: The :obj:`difficulty` parameter is ignored for this terrain. Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # compute the position of the terrain origin = (cfg.size[0] / 2.0, cfg.size[1] / 2.0, 0.0) # compute the vertices of the terrain plane_mesh = make_plane(cfg.size, 0.0, center_zero=False) # return the tri-mesh and the position return [plane_mesh], np.array(origin) def pyramid_stairs_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPyramidStairsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a pyramid stair pattern. The terrain is a pyramid stair pattern which trims to a flat platform at the center of the terrain. If :obj:`cfg.holes` is True, the terrain will have pyramid stairs of length or width :obj:`cfg.platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. .. image:: ../../_static/terrains/trimesh/pyramid_stairs_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/pyramid_stairs_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) # compute number of steps in x and y direction num_steps_x = (cfg.size[0] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 num_steps_y = (cfg.size[1] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 # we take the minimum number of steps in x and y direction num_steps = int(min(num_steps_x, num_steps_y)) # initialize list of meshes meshes_list = list() # generate the border if needed if cfg.border_width > 0.0 and not cfg.holes: # obtain a list of meshes for the border border_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -step_height / 2] border_inner_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) make_borders = make_border(cfg.size, border_inner_size, step_height, border_center) # add the border meshes to the list of meshes meshes_list += make_borders # generate the terrain # -- compute the position of the center of the terrain terrain_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0] terrain_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) # -- generate the stair pattern for k in range(num_steps): # check if we need to add holes around the steps if cfg.holes: box_size = (cfg.platform_width, cfg.platform_width) else: box_size = (terrain_size[0] - 2 * k * cfg.step_width, terrain_size[1] - 2 * k * cfg.step_width) # compute the quantities of the box # -- location box_z = terrain_center[2] + k * step_height / 2.0 box_offset = (k + 0.5) * cfg.step_width # -- dimensions box_height = (k + 2) * step_height # generate the boxes # top/bottom box_dims = (box_size[0], cfg.step_width, box_height) # -- top box_pos = (terrain_center[0], terrain_center[1] + terrain_size[1] / 2.0 - box_offset, box_z) box_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (terrain_center[0], terrain_center[1] - terrain_size[1] / 2.0 + box_offset, box_z) box_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # right/left if cfg.holes: box_dims = (cfg.step_width, box_size[1], box_height) else: box_dims = (cfg.step_width, box_size[1] - 2 * cfg.step_width, box_height) # -- right box_pos = (terrain_center[0] + terrain_size[0] / 2.0 - box_offset, terrain_center[1], box_z) box_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- left box_pos = (terrain_center[0] - terrain_size[0] / 2.0 + box_offset, terrain_center[1], box_z) box_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # add the boxes to the list of meshes meshes_list += [box_top, box_bottom, box_right, box_left] # generate final box for the middle of the terrain box_dims = ( terrain_size[0] - 2 * num_steps * cfg.step_width, terrain_size[1] - 2 * num_steps * cfg.step_width, (num_steps + 2) * step_height, ) box_pos = (terrain_center[0], terrain_center[1], terrain_center[2] + num_steps * step_height / 2) box_middle = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) meshes_list.append(box_middle) # origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], (num_steps + 1) * step_height]) return meshes_list, origin def inverted_pyramid_stairs_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshInvertedPyramidStairsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a inverted pyramid stair pattern. The terrain is an inverted pyramid stair pattern which trims to a flat platform at the center of the terrain. If :obj:`cfg.holes` is True, the terrain will have pyramid stairs of length or width :obj:`cfg.platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. .. image:: ../../_static/terrains/trimesh/inverted_pyramid_stairs_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/inverted_pyramid_stairs_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) # compute number of steps in x and y direction num_steps_x = (cfg.size[0] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 num_steps_y = (cfg.size[1] - 2 * cfg.border_width - cfg.platform_width) // (2 * cfg.step_width) + 1 # we take the minimum number of steps in x and y direction num_steps = int(min(num_steps_x, num_steps_y)) # total height of the terrain total_height = (num_steps + 1) * step_height # initialize list of meshes meshes_list = list() # generate the border if needed if cfg.border_width > 0.0 and not cfg.holes: # obtain a list of meshes for the border border_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -0.5 * step_height] border_inner_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) make_borders = make_border(cfg.size, border_inner_size, step_height, border_center) # add the border meshes to the list of meshes meshes_list += make_borders # generate the terrain # -- compute the position of the center of the terrain terrain_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0] terrain_size = (cfg.size[0] - 2 * cfg.border_width, cfg.size[1] - 2 * cfg.border_width) # -- generate the stair pattern for k in range(num_steps): # check if we need to add holes around the steps if cfg.holes: box_size = (cfg.platform_width, cfg.platform_width) else: box_size = (terrain_size[0] - 2 * k * cfg.step_width, terrain_size[1] - 2 * k * cfg.step_width) # compute the quantities of the box # -- location box_z = terrain_center[2] - total_height / 2 - (k + 1) * step_height / 2.0 box_offset = (k + 0.5) * cfg.step_width # -- dimensions box_height = total_height - (k + 1) * step_height # generate the boxes # top/bottom box_dims = (box_size[0], cfg.step_width, box_height) # -- top box_pos = (terrain_center[0], terrain_center[1] + terrain_size[1] / 2.0 - box_offset, box_z) box_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (terrain_center[0], terrain_center[1] - terrain_size[1] / 2.0 + box_offset, box_z) box_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # right/left if cfg.holes: box_dims = (cfg.step_width, box_size[1], box_height) else: box_dims = (cfg.step_width, box_size[1] - 2 * cfg.step_width, box_height) # -- right box_pos = (terrain_center[0] + terrain_size[0] / 2.0 - box_offset, terrain_center[1], box_z) box_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- left box_pos = (terrain_center[0] - terrain_size[0] / 2.0 + box_offset, terrain_center[1], box_z) box_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # add the boxes to the list of meshes meshes_list += [box_top, box_bottom, box_right, box_left] # generate final box for the middle of the terrain box_dims = ( terrain_size[0] - 2 * num_steps * cfg.step_width, terrain_size[1] - 2 * num_steps * cfg.step_width, step_height, ) box_pos = (terrain_center[0], terrain_center[1], terrain_center[2] - total_height - step_height / 2) box_middle = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) meshes_list.append(box_middle) # origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], -(num_steps + 1) * step_height]) return meshes_list, origin def random_grid_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRandomGridTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with cells of random heights and fixed width. The terrain is generated in the x-y plane and has a height of 1.0. It is then divided into a grid of the specified size :obj:`cfg.grid_width`. Each grid cell is then randomly shifted in the z-direction by a value uniformly sampled between :obj:`cfg.grid_height_range`. At the center of the terrain, a platform of the specified width :obj:`cfg.platform_width` is generated. If :obj:`cfg.holes` is True, the terrain will have randomized grid cells only along the plane extending from the platform (like a plus sign). The remaining area remains empty and no border will be added. .. image:: ../../_static/terrains/trimesh/random_grid_terrain.jpg :width: 45% .. image:: ../../_static/terrains/trimesh/random_grid_terrain_with_holes.jpg :width: 45% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If the terrain is not square. This method only supports square terrains. RuntimeError: If the grid width is large such that the border width is negative. """ # check to ensure square terrain if cfg.size[0] != cfg.size[1]: raise ValueError(f"The terrain must be square. Received size: {cfg.size}.") # resolve the terrain configuration grid_height = cfg.grid_height_range[0] + difficulty * (cfg.grid_height_range[1] - cfg.grid_height_range[0]) # initialize list of meshes meshes_list = list() # compute the number of boxes in each direction num_boxes_x = int(cfg.size[0] / cfg.grid_width) num_boxes_y = int(cfg.size[1] / cfg.grid_width) # constant parameters terrain_height = 1.0 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # generate the border border_width = cfg.size[0] - min(num_boxes_x, num_boxes_y) * cfg.grid_width if border_width > 0: # compute parameters for the border border_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) border_inner_size = (cfg.size[0] - border_width, cfg.size[1] - border_width) # create border meshes make_borders = make_border(cfg.size, border_inner_size, terrain_height, border_center) meshes_list += make_borders else: raise RuntimeError("Border width must be greater than 0! Adjust the parameter 'cfg.grid_width'.") # create a template grid of terrain height grid_dim = [cfg.grid_width, cfg.grid_width, terrain_height] grid_position = [0.5 * cfg.grid_width, 0.5 * cfg.grid_width, -terrain_height / 2] template_box = trimesh.creation.box(grid_dim, trimesh.transformations.translation_matrix(grid_position)) # extract vertices and faces of the box to create a template template_vertices = template_box.vertices # (8, 3) template_faces = template_box.faces # repeat the template box vertices to span the terrain (num_boxes_x * num_boxes_y, 8, 3) vertices = torch.tensor(template_vertices, device=device).repeat(num_boxes_x * num_boxes_y, 1, 1) # create a meshgrid to offset the vertices x = torch.arange(0, num_boxes_x, device=device) y = torch.arange(0, num_boxes_y, device=device) xx, yy = torch.meshgrid(x, y, indexing="ij") xx = xx.flatten().view(-1, 1) yy = yy.flatten().view(-1, 1) xx_yy = torch.cat((xx, yy), dim=1) # offset the vertices offsets = cfg.grid_width * xx_yy + border_width / 2 vertices[:, :, :2] += offsets.unsqueeze(1) # mask the vertices to create holes, s.t. only grids along the x and y axis are present if cfg.holes: # -- x-axis mask_x = torch.logical_and( (vertices[:, :, 0] > (cfg.size[0] - border_width - cfg.platform_width) / 2).all(dim=1), (vertices[:, :, 0] < (cfg.size[0] + border_width + cfg.platform_width) / 2).all(dim=1), ) vertices_x = vertices[mask_x] # -- y-axis mask_y = torch.logical_and( (vertices[:, :, 1] > (cfg.size[1] - border_width - cfg.platform_width) / 2).all(dim=1), (vertices[:, :, 1] < (cfg.size[1] + border_width + cfg.platform_width) / 2).all(dim=1), ) vertices_y = vertices[mask_y] # -- combine these vertices vertices = torch.cat((vertices_x, vertices_y)) # add noise to the vertices to have a random height over each grid cell num_boxes = len(vertices) # create noise for the z-axis h_noise = torch.zeros((num_boxes, 3), device=device) h_noise[:, 2].uniform_(-grid_height, grid_height) # reshape noise to match the vertices (num_boxes, 4, 3) # only the top vertices of the box are affected vertices_noise = torch.zeros((num_boxes, 4, 3), device=device) vertices_noise += h_noise.unsqueeze(1) # add height only to the top vertices of the box vertices[vertices[:, :, 2] == 0] += vertices_noise.view(-1, 3) # move to numpy vertices = vertices.reshape(-1, 3).cpu().numpy() # create faces for boxes (num_boxes, 12, 3). Each box has 6 faces, each face has 2 triangles. faces = torch.tensor(template_faces, device=device).repeat(num_boxes, 1, 1) face_offsets = torch.arange(0, num_boxes, device=device).unsqueeze(1).repeat(1, 12) * 8 faces += face_offsets.unsqueeze(2) # move to numpy faces = faces.view(-1, 3).cpu().numpy() # convert to trimesh grid_mesh = trimesh.Trimesh(vertices=vertices, faces=faces) meshes_list.append(grid_mesh) # add a platform in the center of the terrain that is accessible from all sides dim = (cfg.platform_width, cfg.platform_width, terrain_height + grid_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2 + grid_height / 2) box_platform = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_platform) # specify the origin of the terrain origin = np.array([0.5 * cfg.size[0], 0.5 * cfg.size[1], grid_height]) return meshes_list, origin def rails_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRailsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with box rails as extrusions. The terrain contains two sets of box rails created as extrusions. The first set (inner rails) is extruded from the platform at the center of the terrain, and the second set is extruded between the first set of rails and the terrain border. Each set of rails is extruded to the same height. .. image:: ../../_static/terrains/trimesh/rails_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. this is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration rail_height = cfg.rail_height_range[1] - difficulty * (cfg.rail_height_range[1] - cfg.rail_height_range[0]) # initialize list of meshes meshes_list = list() # extract quantities rail_1_thickness, rail_2_thickness = cfg.rail_thickness_range rail_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], rail_height * 0.5) # constants for terrain generation terrain_height = 1.0 rail_2_ratio = 0.6 # generate first set of rails rail_1_inner_size = (cfg.platform_width, cfg.platform_width) rail_1_outer_size = (cfg.platform_width + 2.0 * rail_1_thickness, cfg.platform_width + 2.0 * rail_1_thickness) meshes_list += make_border(rail_1_outer_size, rail_1_inner_size, rail_height, rail_center) # generate second set of rails rail_2_inner_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * rail_2_ratio rail_2_inner_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * rail_2_ratio rail_2_inner_size = (rail_2_inner_x, rail_2_inner_y) rail_2_outer_size = (rail_2_inner_x + 2.0 * rail_2_thickness, rail_2_inner_y + 2.0 * rail_2_thickness) meshes_list += make_border(rail_2_outer_size, rail_2_inner_size, rail_height, rail_center) # generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) ground_meshes = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_meshes) # specify the origin of the terrain origin = np.array([pos[0], pos[1], 0.0]) return meshes_list, origin def pit_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshPitTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a pit with levels (stairs) leading out of the pit. The terrain contains a platform at the center and a staircase leading out of the pit. The staircase is a series of steps that are aligned along the x- and y- axis. The steps are created by extruding a ring along the x- and y- axis. If :obj:`is_double_pit` is True, the pit contains two levels. .. image:: ../../_static/terrains/trimesh/pit_terrain.jpg :width: 40% .. image:: ../../_static/terrains/trimesh/pit_terrain_with_two_levels.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration pit_depth = cfg.pit_depth_range[0] + difficulty * (cfg.pit_depth_range[1] - cfg.pit_depth_range[0]) # initialize list of meshes meshes_list = list() # extract quantities inner_pit_size = (cfg.platform_width, cfg.platform_width) total_depth = pit_depth # constants for terrain generation terrain_height = 1.0 ring_2_ratio = 0.6 # if the pit is double, the inner ring is smaller to fit the second level if cfg.double_pit: # increase the total height of the pit total_depth *= 2.0 # reduce the size of the inner ring inner_pit_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * ring_2_ratio inner_pit_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * ring_2_ratio inner_pit_size = (inner_pit_x, inner_pit_y) # generate the pit (outer ring) pit_center = [0.5 * cfg.size[0], 0.5 * cfg.size[1], -total_depth * 0.5] meshes_list += make_border(cfg.size, inner_pit_size, total_depth, pit_center) # generate the second level of the pit (inner ring) if cfg.double_pit: pit_center[2] = -total_depth meshes_list += make_border(inner_pit_size, (cfg.platform_width, cfg.platform_width), total_depth, pit_center) # generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -total_depth - terrain_height / 2) ground_meshes = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_meshes) # specify the origin of the terrain origin = np.array([pos[0], pos[1], -total_depth]) return meshes_list, origin def box_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshBoxTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with boxes (similar to a pyramid). The terrain has a ground with boxes on top of it that are stacked on top of each other. The boxes are created by extruding a rectangle along the z-axis. If :obj:`double_box` is True, then two boxes of height :obj:`box_height` are stacked on top of each other. .. image:: ../../_static/terrains/trimesh/box_terrain.jpg :width: 40% .. image:: ../../_static/terrains/trimesh/box_terrain_with_two_boxes.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration box_height = cfg.box_height_range[0] + difficulty * (cfg.box_height_range[1] - cfg.box_height_range[0]) # initialize list of meshes meshes_list = list() # extract quantities total_height = box_height if cfg.double_box: total_height *= 2.0 # constants for terrain generation terrain_height = 1.0 box_2_ratio = 0.6 # Generate the top box dim = (cfg.platform_width, cfg.platform_width, terrain_height + total_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], (total_height - terrain_height) / 2) box_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_mesh) # Generate the lower box if cfg.double_box: # calculate the size of the lower box outer_box_x = cfg.platform_width + (cfg.size[0] - cfg.platform_width) * box_2_ratio outer_box_y = cfg.platform_width + (cfg.size[1] - cfg.platform_width) * box_2_ratio # create the lower box dim = (outer_box_x, outer_box_y, terrain_height + total_height / 2) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], (total_height - terrain_height) / 2 - total_height / 4) box_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(box_mesh) # Generate the ground pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) dim = (cfg.size[0], cfg.size[1], terrain_height) ground_mesh = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground_mesh) # specify the origin of the terrain origin = np.array([pos[0], pos[1], total_height]) return meshes_list, origin def gap_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshGapTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a gap around the platform. The terrain has a ground with a platform in the middle. The platform is surrounded by a gap of width :obj:`gap_width` on all sides. .. image:: ../../_static/terrains/trimesh/gap_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration gap_width = cfg.gap_width_range[0] + difficulty * (cfg.gap_width_range[1] - cfg.gap_width_range[0]) # initialize list of meshes meshes_list = list() # constants for terrain generation terrain_height = 1.0 terrain_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) # Generate the outer ring inner_size = (cfg.platform_width + 2 * gap_width, cfg.platform_width + 2 * gap_width) meshes_list += make_border(cfg.size, inner_size, terrain_height, terrain_center) # Generate the inner box box_dim = (cfg.platform_width, cfg.platform_width, terrain_height) box = trimesh.creation.box(box_dim, trimesh.transformations.translation_matrix(terrain_center)) meshes_list.append(box) # specify the origin of the terrain origin = np.array([terrain_center[0], terrain_center[1], 0.0]) return meshes_list, origin def floating_ring_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshFloatingRingTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a floating square ring. The terrain has a ground with a floating ring in the middle. The ring extends from the center from :obj:`platform_width` to :obj:`platform_width` + :obj:`ring_width` in the x and y directions. The thickness of the ring is :obj:`ring_thickness` and the height of the ring from the terrain is :obj:`ring_height`. .. image:: ../../_static/terrains/trimesh/floating_ring_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). """ # resolve the terrain configuration ring_height = cfg.ring_height_range[1] - difficulty * (cfg.ring_height_range[1] - cfg.ring_height_range[0]) ring_width = cfg.ring_width_range[0] + difficulty * (cfg.ring_width_range[1] - cfg.ring_width_range[0]) # initialize list of meshes meshes_list = list() # constants for terrain generation terrain_height = 1.0 # Generate the floating ring ring_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], ring_height + 0.5 * cfg.ring_thickness) ring_outer_size = (cfg.platform_width + 2 * ring_width, cfg.platform_width + 2 * ring_width) ring_inner_size = (cfg.platform_width, cfg.platform_width) meshes_list += make_border(ring_outer_size, ring_inner_size, cfg.ring_thickness, ring_center) # Generate the ground dim = (cfg.size[0], cfg.size[1], terrain_height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -terrain_height / 2) ground = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(ground) # specify the origin of the terrain origin = np.asarray([pos[0], pos[1], 0.0]) return meshes_list, origin def star_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshStarTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a star. The terrain has a ground with a cylinder in the middle. The star is made of :obj:`num_bars` bars with a width of :obj:`bar_width` and a height of :obj:`bar_height`. The bars are evenly spaced around the cylinder and connect to the peripheral of the terrain. .. image:: ../../_static/terrains/trimesh/star_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If :obj:`num_bars` is less than 2. """ # check the number of bars if cfg.num_bars < 2: raise ValueError(f"The number of bars in the star must be greater than 2. Received: {cfg.num_bars}") # resolve the terrain configuration bar_height = cfg.bar_height_range[0] + difficulty * (cfg.bar_height_range[1] - cfg.bar_height_range[0]) bar_width = cfg.bar_width_range[1] - difficulty * (cfg.bar_width_range[1] - cfg.bar_width_range[0]) # initialize list of meshes meshes_list = list() # Generate a platform in the middle platform_center = (0.5 * cfg.size[0], 0.5 * cfg.size[1], -bar_height / 2) platform_transform = trimesh.transformations.translation_matrix(platform_center) platform = trimesh.creation.cylinder( cfg.platform_width * 0.5, bar_height, sections=2 * cfg.num_bars, transform=platform_transform ) meshes_list.append(platform) # Generate bars to connect the platform to the terrain transform = np.eye(4) transform[:3, -1] = np.asarray(platform_center) yaw = 0.0 for _ in range(cfg.num_bars): # compute the length of the bar based on the yaw # length changes since the bar is connected to a square border bar_length = cfg.size[0] if yaw < 0.25 * np.pi: bar_length /= np.math.cos(yaw) elif yaw < 0.75 * np.pi: bar_length /= np.math.sin(yaw) else: bar_length /= np.math.cos(np.pi - yaw) # compute the transform of the bar transform[0:3, 0:3] = tf.Rotation.from_euler("z", yaw).as_matrix() # add the bar to the mesh dim = [bar_length - bar_width, bar_width, bar_height] bar = trimesh.creation.box(dim, transform) meshes_list.append(bar) # increment the yaw yaw += np.pi / cfg.num_bars # Generate the exterior border inner_size = (cfg.size[0] - 2 * bar_width, cfg.size[1] - 2 * bar_width) meshes_list += make_border(cfg.size, inner_size, bar_height, platform_center) # Generate the ground ground = make_plane(cfg.size, -bar_height, center_zero=False) meshes_list.append(ground) # specify the origin of the terrain origin = np.asarray([0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.0]) return meshes_list, origin def repeated_objects_terrain( difficulty: float, cfg: mesh_terrains_cfg.MeshRepeatedObjectsTerrainCfg ) -> tuple[list[trimesh.Trimesh], np.ndarray]: """Generate a terrain with a set of repeated objects. The terrain has a ground with a platform in the middle. The objects are randomly placed on the terrain s.t. they do not overlap with the platform. Depending on the object type, the objects are generated with different parameters. The objects The types of objects that can be generated are: ``"cylinder"``, ``"box"``, ``"cone"``. The object parameters are specified in the configuration as curriculum parameters. The difficulty is used to linearly interpolate between the minimum and maximum values of the parameters. .. image:: ../../_static/terrains/trimesh/repeated_objects_cylinder_terrain.jpg :width: 30% .. image:: ../../_static/terrains/trimesh/repeated_objects_box_terrain.jpg :width: 30% .. image:: ../../_static/terrains/trimesh/repeated_objects_pyramid_terrain.jpg :width: 30% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: A tuple containing the tri-mesh of the terrain and the origin of the terrain (in m). Raises: ValueError: If the object type is not supported. It must be either a string or a callable. """ # import the object functions -- this is done here to avoid circular imports from .mesh_terrains_cfg import ( MeshRepeatedBoxesTerrainCfg, MeshRepeatedCylindersTerrainCfg, MeshRepeatedPyramidsTerrainCfg, ) # if object type is a string, get the function: make_{object_type} if isinstance(cfg.object_type, str): object_func = globals().get(f"make_{cfg.object_type}") else: object_func = cfg.object_type if not callable(object_func): raise ValueError(f"The attribute 'object_type' must be a string or a callable. Received: {object_func}") # Resolve the terrain configuration # -- pass parameters to make calling simpler cp_0 = cfg.object_params_start cp_1 = cfg.object_params_end # -- common parameters num_objects = cp_0.num_objects + int(difficulty * (cp_1.num_objects - cp_0.num_objects)) height = cp_0.height + difficulty * (cp_1.height - cp_0.height) # -- object specific parameters # note: SIM114 requires duplicated logical blocks under a single body. if isinstance(cfg, MeshRepeatedBoxesTerrainCfg): cp_0: MeshRepeatedBoxesTerrainCfg.ObjectCfg cp_1: MeshRepeatedBoxesTerrainCfg.ObjectCfg object_kwargs = { "length": cp_0.size[0] + difficulty * (cp_1.size[0] - cp_0.size[0]), "width": cp_0.size[1] + difficulty * (cp_1.size[1] - cp_0.size[1]), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } elif isinstance(cfg, MeshRepeatedPyramidsTerrainCfg): # noqa: SIM114 cp_0: MeshRepeatedPyramidsTerrainCfg.ObjectCfg cp_1: MeshRepeatedPyramidsTerrainCfg.ObjectCfg object_kwargs = { "radius": cp_0.radius + difficulty * (cp_1.radius - cp_0.radius), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } elif isinstance(cfg, MeshRepeatedCylindersTerrainCfg): # noqa: SIM114 cp_0: MeshRepeatedCylindersTerrainCfg.ObjectCfg cp_1: MeshRepeatedCylindersTerrainCfg.ObjectCfg object_kwargs = { "radius": cp_0.radius + difficulty * (cp_1.radius - cp_0.radius), "max_yx_angle": cp_0.max_yx_angle + difficulty * (cp_1.max_yx_angle - cp_0.max_yx_angle), "degrees": cp_0.degrees, } else: raise ValueError(f"Unknown terrain configuration: {cfg}") # constants for the terrain platform_clearance = 0.1 # initialize list of meshes meshes_list = list() # compute quantities origin = np.asarray((0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.5 * height)) platform_corners = np.asarray([ [origin[0] - cfg.platform_width / 2, origin[1] - cfg.platform_width / 2], [origin[0] + cfg.platform_width / 2, origin[1] + cfg.platform_width / 2], ]) platform_corners[0, :] *= 1 - platform_clearance platform_corners[1, :] *= 1 + platform_clearance # sample center for objects while True: object_centers = np.zeros((num_objects, 3)) object_centers[:, 0] = np.random.uniform(0, cfg.size[0], num_objects) object_centers[:, 1] = np.random.uniform(0, cfg.size[1], num_objects) # filter out the centers that are on the platform is_within_platform_x = np.logical_and( object_centers[:, 0] >= platform_corners[0, 0], object_centers[:, 0] <= platform_corners[1, 0] ) is_within_platform_y = np.logical_and( object_centers[:, 1] >= platform_corners[0, 1], object_centers[:, 1] <= platform_corners[1, 1] ) masks = np.logical_and(is_within_platform_x, is_within_platform_y) # if there are no objects on the platform, break if not np.any(masks): break # generate obstacles (but keep platform clean) for index in range(len(object_centers)): # randomize the height of the object ob_height = height + np.random.uniform(-cfg.max_height_noise, cfg.max_height_noise) if ob_height > 0.0: object_mesh = object_func(center=object_centers[index], height=ob_height, **object_kwargs) meshes_list.append(object_mesh) # generate a ground plane for the terrain ground_plane = make_plane(cfg.size, height=0.0, center_zero=False) meshes_list.append(ground_plane) # generate a platform in the middle dim = (cfg.platform_width, cfg.platform_width, 0.5 * height) pos = (0.5 * cfg.size[0], 0.5 * cfg.size[1], 0.25 * height) platform = trimesh.creation.box(dim, trimesh.transformations.translation_matrix(pos)) meshes_list.append(platform) return meshes_list, origin
38,422
Python
44.044549
121
0.652829
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import scipy.spatial.transform as tf import trimesh """ Primitive functions to generate meshes. """ def make_plane(size: tuple[float, float], height: float, center_zero: bool = True) -> trimesh.Trimesh: """Generate a plane mesh. If :obj:`center_zero` is True, the origin is at center of the plane mesh i.e. the mesh extends from :math:`(-size[0] / 2, -size[1] / 2, 0)` to :math:`(size[0] / 2, size[1] / 2, height)`. Otherwise, the origin is :math:`(size[0] / 2, size[1] / 2)` and the mesh extends from :math:`(0, 0, 0)` to :math:`(size[0], size[1], height)`. Args: size: The length (along x) and width (along y) of the terrain (in m). height: The height of the plane (in m). center_zero: Whether the 2D origin of the plane is set to the center of mesh. Defaults to True. Returns: A trimesh.Trimesh objects for the plane. """ # compute the vertices of the terrain x0 = [size[0], size[1], height] x1 = [size[0], 0.0, height] x2 = [0.0, size[1], height] x3 = [0.0, 0.0, height] # generate the tri-mesh with two triangles vertices = np.array([x0, x1, x2, x3]) faces = np.array([[1, 0, 2], [2, 3, 1]]) plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces) # center the plane at the origin if center_zero: plane_mesh.apply_translation(-np.array([size[0] / 2.0, size[1] / 2.0, 0.0])) # return the tri-mesh and the position return plane_mesh def make_border( size: tuple[float, float], inner_size: tuple[float, float], height: float, position: tuple[float, float, float] ) -> list[trimesh.Trimesh]: """Generate meshes for a rectangular border with a hole in the middle. .. code:: text +---------------------+ |#####################| |##+---------------+##| |##| |##| |##| |##| length |##| |##| (y-axis) |##| |##| |##+---------------+##| |#####################| +---------------------+ width (x-axis) Args: size: The length (along x) and width (along y) of the terrain (in m). inner_size: The inner length (along x) and width (along y) of the hole (in m). height: The height of the border (in m). position: The center of the border (in m). Returns: A list of trimesh.Trimesh objects that represent the border. """ # compute thickness of the border thickness_x = (size[0] - inner_size[0]) / 2.0 thickness_y = (size[1] - inner_size[1]) / 2.0 # generate tri-meshes for the border # top/bottom border box_dims = (size[0], thickness_y, height) # -- top box_pos = (position[0], position[1] + inner_size[1] / 2.0 + thickness_y / 2.0, position[2]) box_mesh_top = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- bottom box_pos = (position[0], position[1] - inner_size[1] / 2.0 - thickness_y / 2.0, position[2]) box_mesh_bottom = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # left/right border box_dims = (thickness_x, inner_size[1], height) # -- left box_pos = (position[0] - inner_size[0] / 2.0 - thickness_x / 2.0, position[1], position[2]) box_mesh_left = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # -- right box_pos = (position[0] + inner_size[0] / 2.0 + thickness_x / 2.0, position[1], position[2]) box_mesh_right = trimesh.creation.box(box_dims, trimesh.transformations.translation_matrix(box_pos)) # return the tri-meshes return [box_mesh_left, box_mesh_right, box_mesh_top, box_mesh_bottom] def make_box( length: float, width: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True, ) -> trimesh.Trimesh: """Generate a box mesh with a random orientation. Args: length: The length (along x) of the box (in m). width: The width (along y) of the box (in m). height: The height of the cylinder (in m). center: The center of the cylinder (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cylinder. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the box dims = (length, width, height) return trimesh.creation.box(dims, transform=transform) def make_cylinder( radius: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True ) -> trimesh.Trimesh: """Generate a cylinder mesh with a random orientation. Args: radius: The radius of the cylinder (in m). height: The height of the cylinder (in m). center: The center of the cylinder (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cylinder. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the cylinder return trimesh.creation.cylinder(radius, height, sections=np.random.randint(4, 6), transform=transform) def make_cone( radius: float, height: float, center: tuple[float, float, float], max_yx_angle: float = 0, degrees: bool = True ) -> trimesh.Trimesh: """Generate a cone mesh with a random orientation. Args: radius: The radius of the cone (in m). height: The height of the cone (in m). center: The center of the cone (in m). max_yx_angle: The maximum angle along the y and x axis. Defaults to 0. degrees: Whether the angle is in degrees. Defaults to True. Returns: A trimesh.Trimesh object for the cone. """ # create a pose for the cylinder transform = np.eye(4) transform[0:3, -1] = np.asarray(center) # -- create a random rotation euler_zyx = tf.Rotation.random().as_euler("zyx") # returns rotation of shape (3,) # -- cap the rotation along the y and x axis if degrees: max_yx_angle = max_yx_angle / 180.0 euler_zyx[1:] *= max_yx_angle # -- apply the rotation transform[0:3, 0:3] = tf.Rotation.from_euler("zyx", euler_zyx).as_matrix() # create the cone return trimesh.creation.cone(radius, height, sections=np.random.randint(4, 6), transform=transform)
7,614
Python
37.654822
115
0.609535
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/trimesh/mesh_terrains_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from typing import Literal import omni.isaac.orbit.terrains.trimesh.mesh_terrains as mesh_terrains import omni.isaac.orbit.terrains.trimesh.utils as mesh_utils_terrains from omni.isaac.orbit.utils import configclass from ..terrain_generator_cfg import SubTerrainBaseCfg """ Different trimesh terrain configurations. """ @configclass class MeshPlaneTerrainCfg(SubTerrainBaseCfg): """Configuration for a plane mesh terrain.""" function = mesh_terrains.flat_terrain @configclass class MeshPyramidStairsTerrainCfg(SubTerrainBaseCfg): """Configuration for a pyramid stair mesh terrain.""" function = mesh_terrains.pyramid_stairs_terrain border_width: float = 0.0 """The width of the border around the terrain (in m). Defaults to 0.0. The border is a flat terrain with the same height as the terrain. """ step_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the steps (in m).""" step_width: float = MISSING """The width of the steps (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" holes: bool = False """If True, the terrain will have holes in the steps. Defaults to False. If :obj:`holes` is True, the terrain will have pyramid stairs of length or width :obj:`platform_width` (depending on the direction) with no steps in the remaining area. Additionally, no border will be added. """ @configclass class MeshInvertedPyramidStairsTerrainCfg(MeshPyramidStairsTerrainCfg): """Configuration for an inverted pyramid stair mesh terrain. Note: This is the same as :class:`MeshPyramidStairsTerrainCfg` except that the steps are inverted. """ function = mesh_terrains.inverted_pyramid_stairs_terrain @configclass class MeshRandomGridTerrainCfg(SubTerrainBaseCfg): """Configuration for a random grid mesh terrain.""" function = mesh_terrains.random_grid_terrain grid_width: float = MISSING """The width of the grid cells (in m).""" grid_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the grid cells (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" holes: bool = False """If True, the terrain will have holes in the steps. Defaults to False. If :obj:`holes` is True, the terrain will have randomized grid cells only along the plane extending from the platform (like a plus sign). The remaining area remains empty and no border will be added. """ @configclass class MeshRailsTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with box rails as extrusions.""" function = mesh_terrains.rails_terrain rail_thickness_range: tuple[float, float] = MISSING """The thickness of the inner and outer rails (in m).""" rail_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the rails (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshPitTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a pit that leads out of the pit.""" function = mesh_terrains.pit_terrain pit_depth_range: tuple[float, float] = MISSING """The minimum and maximum height of the pit (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" double_pit: bool = False """If True, the pit contains two levels of stairs. Defaults to False.""" @configclass class MeshBoxTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with boxes (similar to a pyramid).""" function = mesh_terrains.box_terrain box_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the box (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" double_box: bool = False """If True, the pit contains two levels of stairs/boxes. Defaults to False.""" @configclass class MeshGapTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a gap around the platform.""" function = mesh_terrains.gap_terrain gap_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the gap (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshFloatingRingTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a floating ring around the center.""" function = mesh_terrains.floating_ring_terrain ring_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the ring (in m).""" ring_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the ring (in m).""" ring_thickness: float = MISSING """The thickness (along z) of the ring (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshStarTerrainCfg(SubTerrainBaseCfg): """Configuration for a terrain with a star pattern.""" function = mesh_terrains.star_terrain num_bars: int = MISSING """The number of bars per-side the star. Must be greater than 2.""" bar_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the bars in the star (in m).""" bar_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the bars in the star (in m).""" platform_width: float = 1.0 """The width of the cylindrical platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshRepeatedObjectsTerrainCfg(SubTerrainBaseCfg): """Base configuration for a terrain with repeated objects.""" @configclass class ObjectCfg: """Configuration of repeated objects.""" num_objects: int = MISSING """The number of objects to add to the terrain.""" height: float = MISSING """The height (along z) of the object (in m).""" function = mesh_terrains.repeated_objects_terrain object_type: Literal["cylinder", "box", "cone"] | callable = MISSING """The type of object to generate. The type can be a string or a callable. If it is a string, the function will look for a function called ``make_{object_type}`` in the current module scope. If it is a callable, the function will use the callable to generate the object. """ object_params_start: ObjectCfg = MISSING """The object curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The object curriculum parameters at the end of the curriculum.""" max_height_noise: float = 0.0 """The maximum amount of noise to add to the height of the objects (in m). Defaults to 0.0.""" platform_width: float = 1.0 """The width of the cylindrical platform at the center of the terrain. Defaults to 1.0.""" @configclass class MeshRepeatedPyramidsTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated pyramids.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for a curriculum of repeated pyramids.""" radius: float = MISSING """The radius of the pyramids (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_cone object_params_start: ObjectCfg = MISSING """The object curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The object curriculum parameters at the end of the curriculum.""" @configclass class MeshRepeatedBoxesTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated boxes.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for repeated boxes.""" size: tuple[float, float] = MISSING """The width (along x) and length (along y) of the box (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_box object_params_start: ObjectCfg = MISSING """The box curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The box curriculum parameters at the end of the curriculum.""" @configclass class MeshRepeatedCylindersTerrainCfg(MeshRepeatedObjectsTerrainCfg): """Configuration for a terrain with repeated cylinders.""" @configclass class ObjectCfg(MeshRepeatedObjectsTerrainCfg.ObjectCfg): """Configuration for repeated cylinder.""" radius: float = MISSING """The radius of the pyramids (in m).""" max_yx_angle: float = 0.0 """The maximum angle along the y and x axis. Defaults to 0.0.""" degrees: bool = True """Whether the angle is in degrees. Defaults to True.""" object_type = mesh_utils_terrains.make_cylinder object_params_start: ObjectCfg = MISSING """The box curriculum parameters at the start of the curriculum.""" object_params_end: ObjectCfg = MISSING """The box curriculum parameters at the end of the curriculum."""
9,969
Python
35.654412
107
0.695857
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/hf_terrains.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions to generate height fields for different terrains.""" from __future__ import annotations import numpy as np import scipy.interpolate as interpolate from typing import TYPE_CHECKING from .utils import height_field_to_mesh if TYPE_CHECKING: from . import hf_terrains_cfg @height_field_to_mesh def random_uniform_terrain(difficulty: float, cfg: hf_terrains_cfg.HfRandomUniformTerrainCfg) -> np.ndarray: """Generate a terrain with height sampled uniformly from a specified range. .. image:: ../../_static/terrains/height_field/random_uniform_terrain.jpg :width: 40% :align: center Note: The :obj:`difficulty` parameter is ignored for this terrain. Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the downsampled scale is smaller than the horizontal scale. """ # check parameters # -- horizontal scale if cfg.downsampled_scale is None: cfg.downsampled_scale = cfg.horizontal_scale elif cfg.downsampled_scale < cfg.horizontal_scale: raise ValueError( "Downsampled scale must be larger than or equal to the horizontal scale:" f" {cfg.downsampled_scale} < {cfg.horizontal_scale}." ) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- downsampled scale width_downsampled = int(cfg.size[0] / cfg.downsampled_scale) length_downsampled = int(cfg.size[1] / cfg.downsampled_scale) # -- height height_min = int(cfg.noise_range[0] / cfg.vertical_scale) height_max = int(cfg.noise_range[1] / cfg.vertical_scale) height_step = int(cfg.noise_step / cfg.vertical_scale) # create range of heights possible height_range = np.arange(height_min, height_max + height_step, height_step) # sample heights randomly from the range along a grid height_field_downsampled = np.random.choice(height_range, size=(width_downsampled, length_downsampled)) # create interpolation function for the sampled heights x = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_downsampled) y = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_downsampled) func = interpolate.RectBivariateSpline(x, y, height_field_downsampled) # interpolate the sampled heights to obtain the height field x_upsampled = np.linspace(0, cfg.size[0] * cfg.horizontal_scale, width_pixels) y_upsampled = np.linspace(0, cfg.size[1] * cfg.horizontal_scale, length_pixels) z_upsampled = func(x_upsampled, y_upsampled) # round off the interpolated heights to the nearest vertical step return np.rint(z_upsampled).astype(np.int16) @height_field_to_mesh def pyramid_sloped_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidSlopedTerrainCfg) -> np.ndarray: """Generate a terrain with a truncated pyramid structure. The terrain is a pyramid-shaped sloped surface with a slope of :obj:`slope` that trims into a flat platform at the center. The slope is defined as the ratio of the height change along the x axis to the width along the x axis. For example, a slope of 1.0 means that the height changes by 1 unit for every 1 unit of width. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_sloped_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_sloped_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration if cfg.inverted: slope = -cfg.slope_range[0] - difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) else: slope = cfg.slope_range[0] + difficulty * (cfg.slope_range[1] - cfg.slope_range[0]) # switch parameters to discrete units # -- horizontal scale width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- height # we want the height to be 1/2 of the width since the terrain is a pyramid height_max = int(slope * cfg.size[0] / 2 / cfg.vertical_scale) # -- center of the terrain center_x = int(width_pixels / 2) center_y = int(length_pixels / 2) # create a meshgrid of the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) # offset the meshgrid to the center of the terrain xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y # reshape the meshgrid to be 2D xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a sloped surface hf_raw = np.zeros((width_pixels, length_pixels)) hf_raw = height_max * xx * yy # create a flat platform at the center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale / 2) # get the height of the platform at the corner of the platform x_pf = width_pixels // 2 - platform_width y_pf = length_pixels // 2 - platform_width z_pf = hf_raw[x_pf, y_pf] hf_raw = np.clip(hf_raw, min(0, z_pf), max(0, z_pf)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def pyramid_stairs_terrain(difficulty: float, cfg: hf_terrains_cfg.HfPyramidStairsTerrainCfg) -> np.ndarray: """Generate a terrain with a pyramid stair pattern. The terrain is a pyramid stair pattern which trims to a flat platform at the center of the terrain. If the :obj:`cfg.inverted` flag is set to :obj:`True`, the terrain is inverted such that the platform is at the bottom. .. image:: ../../_static/terrains/height_field/pyramid_stairs_terrain.jpg :width: 40% .. image:: ../../_static/terrains/height_field/inverted_pyramid_stairs_terrain.jpg :width: 40% Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration step_height = cfg.step_height_range[0] + difficulty * (cfg.step_height_range[1] - cfg.step_height_range[0]) if cfg.inverted: step_height *= -1 # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stairs step_width = int(cfg.step_width / cfg.horizontal_scale) step_height = int(step_height / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the steps current_step_height = 0 start_x, start_y = 0, 0 stop_x, stop_y = width_pixels, length_pixels while (stop_x - start_x) > platform_width and (stop_y - start_y) > platform_width: # increment position # -- x start_x += step_width stop_x -= step_width # -- y start_y += step_width stop_y -= step_width # increment height current_step_height += step_height # add the step hf_raw[start_x:stop_x, start_y:stop_y] = current_step_height # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def discrete_obstacles_terrain(difficulty: float, cfg: hf_terrains_cfg.HfDiscreteObstaclesTerrainCfg) -> np.ndarray: """Generate a terrain with randomly generated obstacles as pillars with positive and negative heights. The terrain is a flat platform at the center of the terrain with randomly generated obstacles as pillars with positive and negative height. The obstacles are randomly generated cuboids with a random width and height. They are placed randomly on the terrain with a minimum distance of :obj:`cfg.platform_width` from the center of the terrain. .. image:: ../../_static/terrains/height_field/discrete_obstacles_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration obs_height = cfg.obstacle_height_range[0] + difficulty * ( cfg.obstacle_height_range[1] - cfg.obstacle_height_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- obstacles obs_height = int(obs_height / cfg.vertical_scale) obs_width_min = int(cfg.obstacle_width_range[0] / cfg.horizontal_scale) obs_width_max = int(cfg.obstacle_width_range[1] / cfg.horizontal_scale) # -- center of the terrain platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create discrete ranges for the obstacles # -- shape obs_width_range = np.arange(obs_width_min, obs_width_max, 4) obs_length_range = np.arange(obs_width_min, obs_width_max, 4) # -- position obs_x_range = np.arange(0, width_pixels, 4) obs_y_range = np.arange(0, length_pixels, 4) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # generate the obstacles for _ in range(cfg.num_obstacles): # sample size if cfg.obstacle_height_mode == "choice": height = np.random.choice([-obs_height, -obs_height // 2, obs_height // 2, obs_height]) elif cfg.obstacle_height_mode == "fixed": height = obs_height else: raise ValueError(f"Unknown obstacle height mode '{cfg.obstacle_height_mode}'. Must be 'choice' or 'fixed'.") width = int(np.random.choice(obs_width_range)) length = int(np.random.choice(obs_length_range)) # sample position x_start = int(np.random.choice(obs_x_range)) y_start = int(np.random.choice(obs_y_range)) # clip start position to the terrain if x_start + width > width_pixels: x_start = width_pixels - width if y_start + length > length_pixels: y_start = length_pixels - length # add to terrain hf_raw[x_start : x_start + width, y_start : y_start + length] = height # clip the terrain to the platform x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def wave_terrain(difficulty: float, cfg: hf_terrains_cfg.HfWaveTerrainCfg) -> np.ndarray: r"""Generate a terrain with a wave pattern. The terrain is a flat platform at the center of the terrain with a wave pattern. The wave pattern is generated by adding sinusoidal waves based on the number of waves and the amplitude of the waves. The height of the terrain at a point :math:`(x, y)` is given by: .. math:: h(x, y) = A \left(\sin\left(\frac{2 \pi x}{\lambda}\right) + \cos\left(\frac{2 \pi y}{\lambda}\right) \right) where :math:`A` is the amplitude of the waves, :math:`\lambda` is the wavelength of the waves. .. image:: ../../_static/terrains/height_field/wave_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. Raises: ValueError: When the number of waves is non-positive. """ # check number of waves if cfg.num_waves < 0: raise ValueError(f"Number of waves must be a positive integer. Got: {cfg.num_waves}.") # resolve terrain configuration amplitude = cfg.amplitude_range[0] + difficulty * (cfg.amplitude_range[1] - cfg.amplitude_range[0]) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) amplitude_pixels = int(0.5 * amplitude / cfg.vertical_scale) # compute the wave number: nu = 2 * pi / lambda wave_length = length_pixels / cfg.num_waves wave_number = 2 * np.pi / wave_length # create meshgrid for the terrain x = np.arange(0, width_pixels) y = np.arange(0, length_pixels) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(width_pixels, 1) yy = yy.reshape(1, length_pixels) # create a terrain with a flat platform at the center hf_raw = np.zeros((width_pixels, length_pixels)) # add the waves hf_raw += amplitude_pixels * (np.cos(yy * wave_number) + np.sin(xx * wave_number)) # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16) @height_field_to_mesh def stepping_stones_terrain(difficulty: float, cfg: hf_terrains_cfg.HfSteppingStonesTerrainCfg) -> np.ndarray: """Generate a terrain with a stepping stones pattern. The terrain is a stepping stones pattern which trims to a flat platform at the center of the terrain. .. image:: ../../_static/terrains/height_field/stepping_stones_terrain.jpg :width: 40% :align: center Args: difficulty: The difficulty of the terrain. This is a value between 0 and 1. cfg: The configuration for the terrain. Returns: The height field of the terrain as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. """ # resolve terrain configuration stone_width = cfg.stone_width_range[1] - difficulty * (cfg.stone_width_range[1] - cfg.stone_width_range[0]) stone_distance = cfg.stone_distance_range[0] + difficulty * ( cfg.stone_distance_range[1] - cfg.stone_distance_range[0] ) # switch parameters to discrete units # -- terrain width_pixels = int(cfg.size[0] / cfg.horizontal_scale) length_pixels = int(cfg.size[1] / cfg.horizontal_scale) # -- stones stone_distance = int(stone_distance / cfg.horizontal_scale) stone_width = int(stone_width / cfg.horizontal_scale) stone_height_max = int(cfg.stone_height_max / cfg.vertical_scale) # -- holes holes_depth = int(cfg.holes_depth / cfg.vertical_scale) # -- platform platform_width = int(cfg.platform_width / cfg.horizontal_scale) # create range of heights stone_height_range = np.arange(-stone_height_max - 1, stone_height_max, step=1) # create a terrain with a flat platform at the center hf_raw = np.full((width_pixels, length_pixels), holes_depth) # add the stones start_x, start_y = 0, 0 # -- if the terrain is longer than it is wide then fill the terrain column by column if length_pixels >= width_pixels: while start_y < length_pixels: # ensure that stone stops along y-axis stop_y = min(length_pixels, start_y + stone_width) # randomly sample x-position start_x = np.random.randint(0, stone_width) stop_x = max(0, start_x - stone_distance) # fill first stone hf_raw[0:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) # fill row with stones while start_x < width_pixels: stop_x = min(width_pixels, start_x + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_x += stone_width + stone_distance # update y-position start_y += stone_width + stone_distance elif width_pixels > length_pixels: while start_x < width_pixels: # ensure that stone stops along x-axis stop_x = min(width_pixels, start_x + stone_width) # randomly sample y-position start_y = np.random.randint(0, stone_width) stop_y = max(0, start_y - stone_distance) # fill first stone hf_raw[start_x:stop_x, 0:stop_y] = np.random.choice(stone_height_range) # fill column with stones while start_y < length_pixels: stop_y = min(length_pixels, start_y + stone_width) hf_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(stone_height_range) start_y += stone_width + stone_distance # update x-position start_x += stone_width + stone_distance # add the platform in the center x1 = (width_pixels - platform_width) // 2 x2 = (width_pixels + platform_width) // 2 y1 = (length_pixels - platform_width) // 2 y2 = (length_pixels + platform_width) // 2 hf_raw[x1:x2, y1:y2] = 0 # round off the heights to the nearest vertical step return np.rint(hf_raw).astype(np.int16)
18,737
Python
41.878718
120
0.660138
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This sub-module provides utilities to create different terrains as height fields (HF). Height fields are a 2.5D terrain representation that is used in robotics to obtain the height of the terrain at a given point. This is useful for controls and planning algorithms. Each terrain is represented as a 2D numpy array with discretized heights. The shape of the array is (width, length), where width and length are the number of points along the x and y axis, respectively. The height of the terrain at a given point is obtained by indexing the array with the corresponding x and y coordinates. .. caution:: When working with height field terrains, it is important to remember that the terrain is generated from a discretized 3D representation. This means that the height of the terrain at a given point is only an approximation of the real height of the terrain at that point. The discretization error is proportional to the size of the discretization cells. Therefore, it is important to choose a discretization size that is small enough for the application. A larger discretization size will result in a faster simulation, but the terrain will be less accurate. """ from .hf_terrains_cfg import ( HfDiscreteObstaclesTerrainCfg, HfInvertedPyramidSlopedTerrainCfg, HfInvertedPyramidStairsTerrainCfg, HfPyramidSlopedTerrainCfg, HfPyramidStairsTerrainCfg, HfRandomUniformTerrainCfg, HfSteppingStonesTerrainCfg, HfTerrainBaseCfg, HfWaveTerrainCfg, )
1,637
Python
40.999999
102
0.782529
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/utils.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import copy import functools import numpy as np import trimesh from collections.abc import Callable from typing import TYPE_CHECKING if TYPE_CHECKING: from .hf_terrains_cfg import HfTerrainBaseCfg def height_field_to_mesh(func: Callable) -> Callable: """Decorator to convert a height field function to a mesh function. This decorator converts a height field function to a mesh function by sampling the heights at a specified resolution and performing interpolation to obtain the intermediate heights. Additionally, it adds a border around the terrain to avoid artifacts at the edges. Args: func: The height field function to convert. The function should return a 2D numpy array with the heights of the terrain. Returns: The mesh function. The mesh function returns a tuple containing a list of ``trimesh`` mesh objects and the origin of the terrain. """ @functools.wraps(func) def wrapper(difficulty: float, cfg: HfTerrainBaseCfg): # check valid border width if cfg.border_width > 0 and cfg.border_width < cfg.horizontal_scale: raise ValueError( f"The border width ({cfg.border_width}) must be greater than or equal to the" f" horizontal scale ({cfg.horizontal_scale})." ) # allocate buffer for height field (with border) width_pixels = int(cfg.size[0] / cfg.horizontal_scale) + 1 length_pixels = int(cfg.size[1] / cfg.horizontal_scale) + 1 border_pixels = int(cfg.border_width / cfg.horizontal_scale) + 1 heights = np.zeros((width_pixels, length_pixels), dtype=np.int16) # override size of the terrain to account for the border sub_terrain_size = [width_pixels - 2 * border_pixels, length_pixels - 2 * border_pixels] sub_terrain_size = [dim * cfg.horizontal_scale for dim in sub_terrain_size] # update the config terrain_size = copy.deepcopy(cfg.size) cfg.size = tuple(sub_terrain_size) # generate the height field z_gen = func(difficulty, cfg) # handle the border for the terrain heights[border_pixels:-border_pixels, border_pixels:-border_pixels] = z_gen # set terrain size back to config cfg.size = terrain_size # convert to trimesh vertices, triangles = convert_height_field_to_mesh( heights, cfg.horizontal_scale, cfg.vertical_scale, cfg.slope_threshold ) mesh = trimesh.Trimesh(vertices=vertices, faces=triangles) # compute origin x1 = int((cfg.size[0] * 0.5 - 1) / cfg.horizontal_scale) x2 = int((cfg.size[0] * 0.5 + 1) / cfg.horizontal_scale) y1 = int((cfg.size[1] * 0.5 - 1) / cfg.horizontal_scale) y2 = int((cfg.size[1] * 0.5 + 1) / cfg.horizontal_scale) origin_z = np.max(heights[x1:x2, y1:y2]) * cfg.vertical_scale origin = np.array([0.5 * cfg.size[0], 0.5 * cfg.size[1], origin_z]) # return mesh and origin return [mesh], origin return wrapper def convert_height_field_to_mesh( height_field: np.ndarray, horizontal_scale: float, vertical_scale: float, slope_threshold: float | None = None ) -> tuple[np.ndarray, np.ndarray]: """Convert a height-field array to a triangle mesh represented by vertices and triangles. This function converts a height-field array to a triangle mesh represented by vertices and triangles. The height-field array is assumed to be a 2D array of floats, where each element represents the height of the terrain at that location. The height-field array is assumed to be in the form of a matrix, where the first dimension represents the x-axis and the second dimension represents the y-axis. The function can also correct vertical surfaces above the provide slope threshold. This is helpful to avoid having long vertical surfaces in the mesh. The correction is done by moving the vertices of the vertical surfaces to minimum of the two neighboring vertices. The correction is done in the following way: If :math:`\\frac{y_2 - y_1}{x_2 - x_1} > threshold`, then move A to A' (i.e., set :math:`x_1' = x_2`). This is repeated along all directions. .. code-block:: none B(x_2,y_2) /| / | / | (x_1,y_1)A---A'(x_1',y_1) Args: height_field: The input height-field array. horizontal_scale: The discretization of the terrain along the x and y axis. vertical_scale: The discretization of the terrain along the z axis. slope_threshold: The slope threshold above which surfaces are made vertical. Defaults to None, in which case no correction is applied. Returns: The vertices and triangles of the mesh: - **vertices** (np.ndarray(float)): Array of shape (num_vertices, 3). Each row represents the location of each vertex (in m). - **triangles** (np.ndarray(int)): Array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ # read height field num_rows, num_cols = height_field.shape # create a mesh grid of the height field y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) # copy height field to avoid modifying the original array hf = height_field.copy() # correct vertical surfaces above the slope threshold if slope_threshold is not None: # scale slope threshold based on the horizontal and vertical scale slope_threshold *= horizontal_scale / vertical_scale # allocate arrays to store the movement of the vertices move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) # move vertices along the x-axis move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold # move vertices along the y-axis move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold # move vertices along the corners move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create vertices for the mesh vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale # create triangles for the mesh triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles
8,005
Python
45.011494
114
0.630231
NVIDIA-Omniverse/orbit/source/extensions/omni.isaac.orbit/omni/isaac/orbit/terrains/height_field/hf_terrains_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING from omni.isaac.orbit.utils import configclass from ..terrain_generator_cfg import SubTerrainBaseCfg from . import hf_terrains @configclass class HfTerrainBaseCfg(SubTerrainBaseCfg): """The base configuration for height field terrains.""" border_width: float = 0.0 """The width of the border/padding around the terrain (in m). Defaults to 0.0. The border width is subtracted from the :obj:`size` of the terrain. If non-zero, it must be greater than or equal to the :obj:`horizontal scale`. """ horizontal_scale: float = 0.1 """The discretization of the terrain along the x and y axes (in m). Defaults to 0.1.""" vertical_scale: float = 0.005 """The discretization of the terrain along the z axis (in m). Defaults to 0.005.""" slope_threshold: float | None = None """The slope threshold above which surfaces are made vertical. Defaults to None, in which case no correction is applied.""" """ Different height field terrain configurations. """ @configclass class HfRandomUniformTerrainCfg(HfTerrainBaseCfg): """Configuration for a random uniform height field terrain.""" function = hf_terrains.random_uniform_terrain noise_range: tuple[float, float] = MISSING """The minimum and maximum height noise (i.e. along z) of the terrain (in m).""" noise_step: float = MISSING """The minimum height (in m) change between two points.""" downsampled_scale: float | None = None """The distance between two randomly sampled points on the terrain. Defaults to None, in which case the :obj:`horizontal scale` is used. The heights are sampled at this resolution and interpolation is performed for intermediate points. This must be larger than or equal to the :obj:`horizontal scale`. """ @configclass class HfPyramidSlopedTerrainCfg(HfTerrainBaseCfg): """Configuration for a pyramid sloped height field terrain.""" function = hf_terrains.pyramid_sloped_terrain slope_range: tuple[float, float] = MISSING """The slope of the terrain (in radians).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" inverted: bool = False """Whether the pyramid is inverted. Defaults to False. If True, the terrain is inverted such that the platform is at the bottom and the slopes are upwards. """ @configclass class HfInvertedPyramidSlopedTerrainCfg(HfPyramidSlopedTerrainCfg): """Configuration for an inverted pyramid sloped height field terrain. Note: This is a subclass of :class:`HfPyramidSlopedTerrainCfg` with :obj:`inverted` set to True. We make it as a separate class to make it easier to distinguish between the two and match the naming convention of the other terrains. """ inverted: bool = True @configclass class HfPyramidStairsTerrainCfg(HfTerrainBaseCfg): """Configuration for a pyramid stairs height field terrain.""" function = hf_terrains.pyramid_stairs_terrain step_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the steps (in m).""" step_width: float = MISSING """The width of the steps (in m).""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" inverted: bool = False """Whether the pyramid stairs is inverted. Defaults to False. If True, the terrain is inverted such that the platform is at the bottom and the stairs are upwards. """ @configclass class HfInvertedPyramidStairsTerrainCfg(HfPyramidStairsTerrainCfg): """Configuration for an inverted pyramid stairs height field terrain. Note: This is a subclass of :class:`HfPyramidStairsTerrainCfg` with :obj:`inverted` set to True. We make it as a separate class to make it easier to distinguish between the two and match the naming convention of the other terrains. """ inverted: bool = True @configclass class HfDiscreteObstaclesTerrainCfg(HfTerrainBaseCfg): """Configuration for a discrete obstacles height field terrain.""" function = hf_terrains.discrete_obstacles_terrain obstacle_height_mode: str = "choice" """The mode to use for the obstacle height. Defaults to "choice". The following modes are supported: "choice", "fixed". """ obstacle_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the obstacles (in m).""" obstacle_height_range: tuple[float, float] = MISSING """The minimum and maximum height of the obstacles (in m).""" num_obstacles: int = MISSING """The number of obstacles to generate.""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0.""" @configclass class HfWaveTerrainCfg(HfTerrainBaseCfg): """Configuration for a wave height field terrain.""" function = hf_terrains.wave_terrain amplitude_range: tuple[float, float] = MISSING """The minimum and maximum amplitude of the wave (in m).""" num_waves: int = 1.0 """The number of waves to generate. Defaults to 1.0.""" @configclass class HfSteppingStonesTerrainCfg(HfTerrainBaseCfg): """Configuration for a stepping stones height field terrain.""" function = hf_terrains.stepping_stones_terrain stone_height_max: float = MISSING """The maximum height of the stones (in m).""" stone_width_range: tuple[float, float] = MISSING """The minimum and maximum width of the stones (in m).""" stone_distance_range: tuple[float, float] = MISSING """The minimum and maximum distance between stones (in m).""" holes_depth: float = -10.0 """The depth of the holes (negative obstacles). Defaults to -10.0.""" platform_width: float = 1.0 """The width of the square platform at the center of the terrain. Defaults to 1.0."""
6,104
Python
34.911765
104
0.706913